囊性纤维化 (CF) 是白种人中最常见的缩短寿命的遗传性疾病,每 2500 个活产婴儿中约有 1 个患有此病(白种人中这种常染色体隐性遗传病的携带者比例约为 1:25)。在缅因州,目前大约有 250 名儿童和成人患有此病。CF 患者因肺部产生浓稠分泌物而出现肺部并发症。所有分泌物无法从气道中清除,从而导致气体交换受损、细菌感染和疤痕组织形成等并发症。细菌感染会导致病情加重,需要吸入抗生素和静脉注射抗生素治疗。每次病情加重都会对肺组织造成进一步不可逆的损害,进行性肺病目前是大约 85% CF 患者的死亡原因。为了避免这些并发症,患者通常需要每天进行多次积极的气道清除治疗、吸入药物治疗和增加营养支持,所有这些治疗可能需要每天 2-4 小时(病情加重时需要更多时间)。近年来,生物技术已经改变了大多数 CF 患者的治疗和生活。一种称为高效调节剂疗法 (HEMT) 的新型药物现已可供多达 90% 的 CF 患者使用。这些口服药物混合物(通过筛选大型化合物库开发)易于服用,可改善肺功能,减少住院频率并显著改善患者的生活质量。早期指标表明,这些药物也显著提高了预期寿命。
单元I对半导体的简介,固体中的能带,有效质量的概念,状态的密度,费米水平。pn连接,二极管方程和二极管等效电路,二极管中的故障,齐纳二极管,隧道二极管,金属半导体连接 - 欧米克和肖特基触点,JFET的特征和同等电路,MOSFET,MOSFET。低维半导体设备 - 量子井,量子线,量子点。高电子迁移式晶体管(HEMT),太阳能电池 - I-V特征,填充因子和效率,LED,LCD和柔性显示器。未来设备的新兴材料:石墨烯,碳纳米管(CNT),ZnO,SIC等。单元-II IC制造 - 晶体生长,外延,氧化,光刻,掺杂,蚀刻,隔离方法,隔离方法,金属化,粘合,薄膜沉积和表征技术:XRD,TEM,SEM,EDX,EDX,薄膜,薄膜和无源设备,MOS技术和Mos设备和莫斯设备和莫斯式的NMOS和CMOS和CMOS和CMOS的缩放,NMOS和CMOS和CMOS的缩放,NMOS和CMOS和CMOS和CMOS的缩放,NMOS和CMOS和CMOS,NMOS和CMOS,NMOS和CMOS,NMOS和CMOS,NMOS和CMOS缩放,CMOS和CMOS,NMOS和CMOS缩放,CMOS和CMOS和CMOS的缩放电压,NMOS和CMOS逆变器,电荷耦合设备(CCD) - 结构,电荷存储和传输,VLSI设计的基础,贴纸图,布局设计规则。单元III叠加,Thevenin,Norton和最大功率传递定理,网络元素,网络图,节点和网格分析。拉普拉斯变换,傅立叶变换和Z变换。时间和频域响应,被动过滤器,两个端口网络参数:Z,Y,ABCD和H参数,传输函数,信号表示,状态可变的电路分析方法,AC电路分析,瞬态分析,零和极点,Bode图。
宽带隙半导体 SiC 和 GaN 已商业化用于电力电子和可见光至紫外发光二极管(例如 GaN/InGaN/AlGaN 材料系统)。对于电力电子应用,SiC MOSFET(金属 - 氧化物 - 半导体场效应晶体管)和整流器以及 GaN/AlGaN HEMT 和垂直整流器在高功率水平下提供比 Si 器件更高效的切换,现在正用于电动汽车及其充电基础设施。这些器件还可应用于涉及高温和极端环境的电动飞机和太空任务。在本综述中,将它们的固有辐射硬度(定义为对总剂量的耐受性)与 Si 器件进行了比较。宽带隙半导体的固有辐射硬度更高,部分原因是它们产生缺陷的阈值能量(原子键强度)更大,更重要的是因为它们的缺陷复合率高。然而,现在人们越来越认识到,SiC 和 GaN 功率器件中重离子引起的灾难性单粒子烧毁通常发生在电压约为额定值的 50% 时。在高线性能量传输速率和高施加偏压下,离子诱导泄漏发生在外延区域内的临界功率耗散之上。沿离子轨道耗散的功率量决定了漏电流衰减的程度。最终结果是沿离子轨道产生的载流子发生碰撞电离和热失控。发光器件不受这种机制的影响,因为它们是正向偏置的。应变最近也被确定为影响宽带隙器件辐射敏感性的一个参数。
NC州立大学(NCSU)在电气和计算机工程部门的III-V半导体领域以及材料科学与工程学部门内有几个博士后位置空缺。博士后研究职位在以下研究领域提供:III-硝酸盐电子和光电设备的异质整合,制造和表征:设计和开发下一代异质整合III-nitride Optoelectronic和电子设备。位置将包括电子和光电设备结构的设备设计,制造,表征和测试,以实现宽带的带隙电子光功能IC。强烈优选III-N设备设计和制造方面的先前经验。III二硝酸RF设备设计,制造和表征(Pavlidis):设计和模型的新型RF设备,使用宽带gap(WBG)和超宽的带隙(UWBG)III-硝酸盐用于下一代功率放大器。制造这些设备,考虑了通过晶圆粘结整合异质材料以增强性能/功能的机会。执行设备和测试结构的DC-TO-RF表征,将材料属性与设备行为联系起来。优先使用III-V HEMT和/或HBT的事先经验。III-Nitride Epitaxy and Materials Characterization (Sitar): MOCVD growth of III-nitrides (primarily) on native substrates, III-nitride structures (heterojunctions, MQWs, graded layers, lateral polarity structures) for electronic and optoelectronic devices, materials characterization (XRD, AFM, XPS, SEM, TEM, PL, electrical).需要在III-NINRIDE或相关的宽带隙半导体方面的经验。需要强大的物理背景。
图1b显示了提出的三切口T型(3S-TT)桥腿,其开关节点SW 1可以与正,中或负轨道绑定,即中间或负轨,即𝑉in,p = in,p =𝑉in,n =𝑉n = in = in n = the,在相同的双极和/或三级输出电压能力中,与fb相同。与常规的TT桥腿[13],[14]不同,中点开关S F,1用标准的GAN晶体管实现,而不是通过两个这样的晶体管的抗序列连接或单一的双向交换机[15] - [17]。由于通常是非常低的直流电压,通常是p≤2v和/或𝑉in,n≤2v:1c,只要gan hemt的基本(功能)对称性可以支撑负耗压电压𝑉ds <0,只要栅极少量电压𝑉gd gd t - ds> - ds> ds> - (𝑉ds> ds> ds> ds> ds> ds> - 𝑉t-t- t- t- gs)。因此,可以使用负栅极源电压𝑉gs在一定程度上增加反向阻塞能力。1,2有利地,在任何给定时间,在载荷电流路径(即与负载串联)中只有一个开关,而不是在FB的情况下而不是两个开关。因此,考虑到每个位置的相同数量的晶体管,提出的3S-TT将传导损失减少至少两个。3图进一步注意到,在3S-TT中,从S HS,1到中点开关S F的换向,1涉及低侧开关的反行二极管,如缩放波形所示。即,2进一步显示了FB的关键波形和提议的3S-TT相模块(即,在以下内容中考虑了𝑁pH = 1),在下面考虑了相同的输出电压以及(总数)串联电感器和输出滤波器套管器的相同需求和应力(请注意3S-TT的设备开关频率是3S-TT的设备开关频率是FB,但)。
基本上,微滤线的微型播放主要由µ LED阵列和电子零件组成,这些阵列和电子零件可电动驱动单个µ LED。当前,使用两种主要方法来整合µ LED阵列和电子零件。第一种方法是基于大规模转移技术的所谓“选择”,这意味着数百万的LED从晶片转移到晶体管背板,在晶体管背板上,非常高的精度约为1 µm,需要大量时间。结果,产率通常非常低,[13-16],因此这种方法对于制造微型播放是不切实际的,尤其是对于AR/VR应用。第二种方法是基于翻转芯片键合技术,其中µ LED和CMO(用于电动驱动单个µ LED)分别制造,然后将其合并晶片键合在一起。[17]但是,值得强调的是,第二种方法面临着两个主要的挑战。第一个挑战是由于组装问题。由于需要通过CMOS CUIT来驱动单独的可寻址µ LED,因此采用了一种异质的集成方法,用于与电动驱动零件的Combine µ LED。[4,8–13]在这种情况下,仍然存在µ LED和CMO之间对齐的准确性问题,因此仍然限制了转移产量,然后增加了制造成本。第二个挑战是由于µ LED的光学性能降解,其中µ LED是通过光刻技术和随后的干蚀刻过程制造的。[4-11]在这种干蚀刻和随访过程中,引入了严重的损害,从而导致µ LED的光学表现严重降解。[18,19]此外,随着缩小LED的规模,该问题的严重程度进一步增强。[18-22]尽管采用了使用原子层沉积(ALD)技术的额外钝化过程,但[22,23]由于在干etter蚀过程中造成的不可逆损害,光学性能的恢复是微不足道的。因此,用于制造微型播放的这种杂基整合方法仍然远非令人满意。我们认为,电气驱动的µ LED和高电子迁移式晶体管(HEMT)的外延整合
基本上,微滤线的微型播放主要由μLED阵列和电子零件组成,这些阵列和电子零件可电动驱动单个μLED。当前,使用两种主要方法来整合μLED阵列和电子零件。第一种方法是基于大规模转移技术的所谓“选择”,这意味着数百万的LED从晶圆转移到晶体管背板,在晶体管背板中,非常高的精度约为1 µm,需要大量时间。结果,产率通常非常低,[13-16],因此这种方法对于制造微型播放是不切实际的,尤其是对于AR/VR应用。第二种方法是基于翻转芯片键合技术,其中μLED和CMO(用于电动驱动单个μLED)分别制造,然后将其合并晶片键合在一起。[17]但是,值得强调的是,第二种方法面临着两个主要的挑战。第一个挑战是由于组装问题。由于需要通过CMOS CUIT来驱动单独的可寻址LED,因此采用了一种异质的集成方法,用于与电动驱动零件的CombineμLED。[4,8–13]在这种情况下,仍然存在μLED和CMO之间对齐的准确性问题,因此仍然限制了转移产量,然后增加了制造成本。第二个挑战是由于μLED的光学性能降解,其中μLED是通过光刻技术和随后的干蚀刻过程制造的。[4-11]在这种干蚀刻和随访过程中,引入了严重的损坏,导致μED的光学效果严重降解。[18,19]此外,随着降低LED的尺寸,问题的严重程度进一步增强。[18-22]尽管采用了使用原子层沉积(ALD)技术的额外钝化过程,但[22,23]由于在干etter蚀过程中造成的不可逆损害,光学性能的恢复是微不足道的。因此,用于制造微型播放的这种杂基整合方法仍然远非令人满意。我们认为,电气驱动的LED和高电子迁移式晶体管(HEMT)的外延整合
DOI: 10.5281/zenodo.3591592 CZU 62-83:621.38 电力电子设备的未来趋势 Titu-Marius I. Băjenescu,ORCID ID:0000-0002-9371-6766 瑞士技术协会,瑞士电子集团 tmbajenesco@gmail.com 收稿日期:2019 年 10 月 16 日 接受日期:2019 年 2 月 12 日 摘要。半导体技术的最新进步以及电力电子器件在电能不同领域(特别是航空、运输和配电网络应用)日益增长的需求,对高频、高电压、高温和高电流密度等新规范提出了要求。所有这些都促进了电力设备的强劲发展。为此,应开发低电阻率薄膜的分离技术以及厚膜生长技术,包括绝缘晶片上的热丝 CVD。本文概述了半导体制造的发展、当前应用和前景。关键词:GaN、SiC、Si vs SiC、IGBT、MOSFET、HEMT、HFET、FET、金刚石功率器件。简介半导体的历史悠久而复杂。表 1 显示了功率半导体器件发展的时间表。在 1950 年代,晶闸管或可控硅整流器 (SCR) 是数百伏固态电力电子的唯一选择。随着技术的进一步发展,JFET、功率 MOSFET 和 IGBT 等新器件问世,它们的性能得到了极大提高,额定电压和电流也更高。现在,在 21 世纪,宽带隙 (WBG) 半导体是高性能电力电子趋势中的最新产品。电力电子技术是一项复杂的跨学科技术,从事该领域的研究需要具备电气工程及其他领域的综合背景。器件研究极其重要,因为该领域的发展从根本上引发了现代电力电子革命。目前硅和宽带隙 (WBG) 功率半导体(图 1、2、3、4)的研发趋势将持续下去,直到功率器件特性和额定值得到显著改善,接近理想的转换。自宽带隙电力电子技术问世以来,器件评论迎来了第二波流行,涵盖了 SiC、GaN 等材料,也许还包括钻石(但程度较小)。很明显,在不久的将来,SiC(而不是 GaN)将成为所选市场的主要 WBG 功率器件材料。宽带隙半导体是半导体材料的一个子类,其带隙大于 Si,通常在 2 到 4 电子伏 (eV) 之间。
• 2020-2021 财年 DUCC 技术咨询委员会成员,2020 年 9 月 24 日至 2021 年 9 月 23 日 • 德里大学南校区电话咨询委员会主席,2020 年 6 月 22 日至今 • 德里大学 Mata Sundri 学院管理委员会成员,2020 年 8 月 17 日至今 • 德里大学 Acharya Narendra Dev 学院管理委员会成员,2020 年 8 月 17 日至今 • 查谟大学电子学研究委员会成员,2018-2021 年 • 德里大学 DUCC 技术咨询委员会成员,2019 年至今 • 德里大学 B.Sc. (H) 电子学项目协调员,2006 年至今。 • 自 2006 年至今担任德里大学电子科学系 DRC 成员 • 自 2006 年至今担任德里大学电子科学系 BRS 成员 • 德里大学 B.Sc. (H) 仪器项目协调员,2006-2020。 • 教务长 - 德里大学南校区 Geetanjali 宿舍,2014 年 7 月 - 2020 年 1 月。 • 成员 - IEEE EDS 德里分会奖项和院士提名常务委员会,2015 年 2 月 - 2017 年 2 月。 • 采购委员会主席 - 德里大学南校区电子科学系,2013 年 2 月 - 2017 年 2 月。 • VC 提名人 - DRC,NSIT,Dwarka,新德里,2015 年 8 月 - 2016 年 7 月。 • VC 提名人 - DRC,IIC,UDSC,新德里-21,2014 年 1 月2016. • 德瓦尔卡 Netaji Subhas 理工学院 (NSIT) 总理事会成员,2014 年 2 月 - 2016 年。 • Rajkumari Amrit Kaur 护理学院管理委员会成员,2014 年 4 月 - 2016 年 4 月。 • 希萨尔 Guru Jambheshwar 科技大学电子与通信工程系研究委员会外部专家,2014 年 4 月 - 2016 年 4 月。 • 索尼帕特 Bhagat Phool Singh Mahila Vishvidyalaya 电子与通信工程系研究委员会外部专家,2014 年 1 月 - 2016 年 1 月。 • 新德里 Kalkaji Deshbandhu 学院管理委员会成员兼财务主管,2013 年 9 月 - 2016。 • 就业协调员,德里大学电子科学系,南校区,2003-2014。 • 学术和就业协调员,信息学与通信学院(信息学部),UDSC,印度,1999 年 3 月 - 2002 年 9 月。 兴趣/专业领域 亚微米和深亚微米场效应器件的建模和特性。这包括 Si MOSFET、隧道 FET、MESFET、GaAs MESFET、无结晶体管和 AlGaN/GaN 和 GaAs/InP HEMT
在现代通信标准中,功率放大器(PA)必须在越来越大的动态范围和带宽上实现高效率,同时保持严格的线性要求。效率提高可以通过负载调制体系结构(例如Doherty功率放大器)来实现。但是,基于此概念的放大器通常与线性降解有关。在4G网络中,数字预性用于减轻负载调节的放大器的非线性。但是,5G NR系统的更大带宽和复杂性限制了DPD的适用性。本论文旨在解决高效率功率扩增器的固有线性,以便无需有限的预期,可以充分地进行效率。它专注于负载模块的平衡放大器(LMBA)。LMBA是最近的建筑,作为经典Doherty PA的替代品。这里提出了对LMBA的新数学分析,重点是负载调制轨迹。这种基于阻抗的分析导致开发了一种新方法,用于从主晶体管的载荷测量值中设计线性/有效的功率放大器。将此方法应用于10W gan Hemt,我们表明,在单端配置中具有相似性能的三个不同的放大器在LMBA档案中使用时的性能非常不同。根据我们的理论,LMBA的幅度(AM-AM)和相(AM-PM)畸变取决于负载轨迹。然后,在GAAS技术中使用相同的方法在1W频段1W MMIC放大器上应用。选择它以使相失真最小化,然后可以选择第二个谐波终止以最大化效率。j级第二谐波终止被确定为最佳情况,导致-40.5dBC ACLR(相邻的通道泄漏比),当用10 MHz刺激10 MHz时,在2.4GHz的耗尽效率为40.5%,为8.6db Papr(峰值平均电力比)LTE信号。但是,在这些频率下,第二个谐波终止对功率放大器的效率的影响很小。缺乏这种额外的自由度,不能为缓解AM-PM选择载荷轨迹,并且效率/线性权衡会降低。最后,提出了阻抗不匹配在功率放大器中的起源和影响。研究了输出阻抗不匹配下负载调制平衡放大器的性能。我们观察到,如果未在输出处显示最佳阻抗,则会取消LMBA的效率提高。然后提出了一种新型的双重平衡LMBA,以实现高效率功率放大器中的不匹配弹性。