VIGO Photonics 设计和制造 HgCdTe、InAs 和 InAsSb 探测器、专用电子设备(前置放大器、TEC 控制器、电源)、探测模块以及机械配件。这些设备的特点是灵敏度高,光谱范围广,从 2 到 14 μm,速度快,频率带宽高达 1 GHz。
摘要。中红外检测器阵列从2.8到20μm,在Origins空间望远镜的中红外光谱仪仪器的设计中基本。该仪器旨在检测和测量外部宿主星的气体中生物起源气体气体的光谱特征。为了进行这些检测,当检测器阵列的像素的像素在几个小时的典型传输时间内暴露于多个时间序列积分中的恒定通量时,需要具有高信号稳定性。通过使用致密的瞳孔光谱仪设计,可以缓解指向效应,因为指向变化不会在检测器上删除光谱,并且在大量像素上平均每个光的光长度平均,从而提供了良好的分光光度计稳定性。当前的最新检测器阵列无法实现这些稳定性,尽管有了可行的开发计划,应该可以实现这种级别的调整。正在考虑此开发的三种检测器技术,即HGCDTE阵列,SI:作为杂质带传导阵列和过渡边缘超级导体重测阵列。我们主要处理HGCDTE技术开发,但也引入了其他两种技术的前进道路。经过几年的调查计划,将进行下调以选择飞行技术。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或重新分配或重新分配本工作,需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1 Jatis.6.4.041503]
摘要。中红外检测器阵列从2.8到20μm,在Origins空间望远镜的中红外光谱仪仪器的设计中基本。该仪器旨在检测和测量外部宿主星的气体中生物起源气体气体的光谱特征。为了进行这些检测,当检测器阵列的像素的像素在几个小时的典型传输时间内暴露于多个时间序列积分中的恒定通量时,需要具有高信号稳定性。通过使用致密的瞳孔光谱仪设计,可以缓解指向效应,因为指向变化不会在检测器上删除光谱,并且在大量像素上平均每个光的光长度平均,从而提供了良好的分光光度计稳定性。当前的最新检测器阵列无法实现这些稳定性,尽管有了可行的开发计划,应该可以实现这种级别的调整。正在考虑此开发的三种检测器技术,HGCDTE阵列,SI:作为杂质带传导阵列和过渡边缘超级导体重测阵列。我们主要处理HGCDTE技术开发,但也引入了其他两种技术的前进道路。经过几年的调查计划,将进行下调以选择飞行技术。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或重新分配或重新分配本工作,需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1 Jatis.6.4.041503]
然而,TR系统有望在航天器应用中展现其真正价值,因为它也具有上述优于航天器中的PV系统的优势,而太空是TR系统最合适的散热器。将TR系统视为热机,假设太空为3 K,即使热源低于373 K,卡诺效率也能达到99%(Wang et al.,2019)。从上述观点出发,本研究研究了TR系统在航天器中的使用情况(图1),并计算了发电和效率的理论极限。此外,还研究了电池温度、带隙和输出电压的影响。计算了使用真实半导体HgCdTe(MCT)获得的发电量,并将其与理论极限进行了比较。
I. i ntroduction t wo-photon吸收(TPA)成像吸引了许多学科的许多兴趣,例如生物学,医学,材料和纳米技术[1] - [4]。tpa固有地是一个非线性过程,其中通过同时吸收两个光子来实现从基态到激发态的转变。这启用了独特的微观技术,即两光子荧光显微镜[1],可以在复杂的生物样本中进行更深入的渗透和更好的三维分辨率[5]。最近,TPA的非线性响应探索了半导体中的非线性响应,尤其是在光dectortor中[6] - [8]。与晶体中的其他光学非线性过程不同,例如第二次谐波,KERR效应,半导体中的TPA可以在时间门控中超快[7],对时间相变化和极化不敏感[9],为成像目的提供了独特的机会[9]。例如,已经证明类似于光学相干断层扫描(OCT)配置的TPA成像[10]对时间和空间湍流不敏感[9],该[9]可用于通过不透明的散射介质进行成像[11]。超过三维中级成像[12],可以使用非排效的TPA获得,其不冷的GAN光电二极管具有与传统的液态硝基冷却的HGCDTE(MCT)检测器相当的效率[8] [8],在其中扩展了Nondegenerate TPA,可以扩展到探测范围,并延伸到辅助范围中。超过三维中级成像[12],可以使用非排效的TPA获得,其不冷的GAN光电二极管具有与传统的液态硝基冷却的HGCDTE(MCT)检测器相当的效率[8] [8],在其中扩展了Nondegenerate TPA,可以扩展到探测范围,并延伸到辅助范围中。
摘要。量子点红外光电探测器(QDIP)定位成为红外(IR)检测领域的重要技术,尤其是对于高温,低成本,高产,高收益检测器阵列所需的军事应用所需的技术。高操作温度(≥150k)光电探测器通过启用低温露水和斯特林冷却系统的成本降低了红外成像系统的成本,并被热电冷却器代替。QDIP非常适合在升高温度下检测中期光,该应用可能被证明是下一个量子点的商业市场。虽然量子点外延的生长和IR辐射的标记内吸收良好,但量子点非均匀性仍然是一个重大挑战。在150 K处的最新IR检测,而QDIP焦平面阵列的性能与77 K的HGCDTE相当可比。带隙工程以减少深色电流并增强多光谱检测(例如共鸣隧道QDIP),QDIP的性能和适用性将继续提高。
我们介绍了一种用于地球观测微型卫星平台的空间高光谱成像仪 (HSI) 的光学设计。空间高光谱成像在农业、水管理、环境监测、矿物学和遥感等领域具有许多重要应用。设计了一种 HSI 系统,该系统能够实现地面采样距离 (GSD) 小于 15 m、扫描幅宽大于 15 km、光谱分辨率小于 10 nm 并在低地球轨道 (LEO) 上运行。系统尺寸限制为小于 0.125 𝑚 3 的体积。选择商用、冷却的 HgCdTe 型成像传感器来为设计的成像仪操作 400 – 2500 nm 的光谱。HSI 光学设计包括离轴三镜消像散 (TMA) 型望远镜和改进的 Offner 型光谱仪。使用改进的 Offner 型光谱仪设计,以两个 Féry 棱镜作为衍射元件。整体HSI系统设计符合本文描述的性能目标。
摘要:红外辐射是一种波长介于可见光和微波之间的电磁波,人眼无法看见。这种辐射必须转化为其他物理上可量化的性质才能被探测和测量,才能确定它是否存在、强度如何。红外探测器是将入射红外光信号转化为电信号输出的工具。随着红外探测器在各国的广泛应用,对红外探测器提出了更高的要求。为了进一步拓展波长、提高分辨率、降低成本,基于Ⅱ类超晶格、胶体量子点、硅基材料等新材料、新技术的红外探测器得到了发展。本文综述了国内外红外探测器的发展情况,报道了红外探测器的新材料、新技术。讨论了当前红外探测器研究的局限性和优势,展望了红外探测器未来的发展趋势。此外,概述了红外探测器的最新进展。介绍了基本机制。然后,介绍了材料纳米线、HgCdTe、HOT 和 InAs/InGaAs。最后,展示了进一步的应用。
摘要:我们报告了一种新型空间激光雷达的开发,该雷达专为执行小型行星体任务而设计,用于地形测绘和样本采集或着陆支持。该仪器设计为具有宽动态范围,并针对不同任务阶段提供多种操作模式。激光发射器由光纤激光器组成,该激光器通过归零伪噪声 (RZPN) 代码进行强度调制。接收器通过将检测到的信号与 RZPN 内核关联来检测编码脉冲序列。与常规伪噪声 (PN) 激光雷达不同,RZPN 内核在激光发射窗口外设置为零,从而消除了接收器积分时间内的大部分背景噪声。该技术允许使用低峰值功率但高脉冲率的激光器(例如光纤激光器)进行长距离测距而不会产生混叠。激光功率和探测器的内部增益均可调整,以提供宽测量动态范围。激光调制代码模式也可以在轨道上重新配置,以优化针对不同测量环境的测量。接收器采用多像素线性模式光子计数 HgCdTe 雪崩光电二极管 (APD) 阵列,在近红外至中红外波长范围内具有近量子极限灵敏度,许多光纤激光器和二极管激光器都在此波长范围内工作。该仪器采用模块化和多功能设计,主要采用光通信行业开发的组件构建。
近红外(NIR)光检测是对应用程序,例如监视系统,面部识别,工业排序和检查,脉搏氧化,光学相干性层析成像和成像等应用中对技术解决方案不断增长的需求的关键。[1-10]无机半导体(例如GE,INGAAS,PBS和HGCDTE)允许宽带光检测从0.8至10 µm,在10 10 Jones附近或更高范围内具有特定的检测(D *)。[11]同时,其中一些传统材料含有有毒的重金属,总体生产成本相当高。此外,商业NIR成像传感器的分辨率有限,这与光活性层通过电线键入电气连接安装到硅读出的集成电路(ROIC)的事实有关。[12]这将最小的像素螺距限制在大约10 µm上,因为需要ROIC和活动层之间非常精确的对齐。为了允许像素大小的缩放,一项持续的努力集中在ROIC上直接生长光活性层。然而,由于活性层与ROIC或电气互连之间的热膨胀系数的差异,经常观察到温度波动时的设备分解。[13]调用半导体的另一个限制是它们的宽带吸收。这只能通过增加设备复合度来实现波长的选择性,例如通过其他光学滤镜和二分色棱镜,并对空间分辨率提出了额外的限制。[14]