碱基编辑器是 RNA 引导的脱氨酶,可实现位点特异性核苷酸转换。这些 Cas 脱氨酶融合蛋白的靶向范围主要取决于靶基因座处原间隔区相邻基序 (PAM) 的可用性,并且仅限于 CRISPR-Cas R 环内的窗口,其中单链 DNA (ssDNA) 可供脱氨酶接触。在这里,我们推断 Cas9-HNH 核酸酶结构域在空间上限制了 ssDNA 的可及性,并证明省略该结构域会扩大编辑窗口。通过将 HNH 核酸酶结构域与单体或异二聚体腺苷脱氨酶交换,我们还设计了具有 PAM 近端移位编辑窗口的腺嘌呤碱基编辑器变体 (HNHx-ABE)。这项工作扩展了碱基编辑器的靶向范围,并提供了明显更小的碱基编辑器变体。此外,它还提供了 Cas9 蛋白质工程的未来潜在方向,其中 HNH 结构域可以被作用于 ssDNA 的其他酶取代。
多结构域蛋白内的变构信号传导是空间上相距较远的功能位点之间通信的驱动因素。了解大型多结构域蛋白中变构耦合的机制是实现系统空间和时间控制的最有希望的途径。最近,CRISPR-Cas9 在分子生物学和医学领域的应用激增,这促使人们需要了解 Cas9 的原子级蛋白质动力学(这是其变构串扰的驱动力)如何影响其生物物理特性。在本研究中,我们使用核磁共振 (NMR) 和计算的协同方法来精确定位热稳定性 Geo Cas9 的 HNH 结构域中的变构热点。我们表明,K597 突变为丙氨酸会破坏盐桥网络,进而改变 Geo HNH 结构域的结构、变构运动的时间尺度和热稳定性。在广泛研究的中温 S. pyogenes Cas9 中,这种同源赖氨酸到丙氨酸的突变同样改变了 Sp HNH 域的动力学。我们之前已经证明,通过突变改变变构是 Sp Cas9 (e Sp Cas9) 特异性增强的来源。因此,这在 Geo Cas9 中可能也是如此。由 AIP Publishing 独家授权发布。https://doi.org/10.1063/5.0128815
许多细菌对入侵的噬菌体或质粒具有 II 型免疫力,称为成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关 9 (Cas9) 系统,用于检测和降解外来 DNA 序列。Cas9 蛋白有两个负责双链断裂的核酸内切酶(分别称为 HNH 结构域,用于切割 DNA 双链的靶链,RuvC 结构域用于切割非靶链)和一个单向导 RNA (sgRNA) 结合结构域,其中 RNA 和靶 DNA 链是碱基配对的。三种工程化的单 Lys-to-Ala HNH 突变体(K810A、K848A 和 K855A)表现出对靶 DNA 链切割的增强的底物特异性。我们在本研究中报告,在野生型酶中,在 1mM EDTA 存在下,与催化位点相邻的含 Y836 环(包括 E827-D837)内的 D835、Y836 和 D837 具有无法表征的加宽 1 H 15 N NMR 共振,而环中其余残基具有不同程度的加宽 NMR 光谱。我们发现,野生型酶中的该环在分子动力学 (MD) 模拟期间表现出三种不同的构象,而三个 Lys-to-Ala 突变体
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2020 年 11 月 9 日发布。;https://doi.org/10.1101/2020.11.09.371237 doi:bioRxiv 预印本