寻找超对称粒子是大型强子对撞机 (LHC) 的主要目标之一。超对称顶部 (停止) 搜索在这方面发挥着非常重要的作用,但 LHC 下一个高光度阶段将达到前所未有的碰撞率,这对任何新信号与标准模型背景的分离提出了新的挑战。量子计算技术提供的大规模并行性可以为这个问题提供有效的解决方案。在本文中,我们展示了缩放量子退火机器学习方法的一种新应用,用于对停止信号与背景进行分类,并在量子退火机中实现它。我们表明,这种方法与使用主成分分析对数据进行预处理相结合,可以产生比传统多元方法更好的结果。
但是,物理学家已经知道,即使使用希格,标准模型也必须不完整。一方面,它无法解释重力。此外,从1970年代开始的观察结果表明,该模型仅占宇宙能量的5%。一种称为暗物质的神秘物质又占25%,而更神秘的“暗能量”占了其余70%。在接下来的几十年中,理论家开发了一组统称为“超对称性”的理论,表明大型强子对撞机(LHC)几乎在欧洲的核研究组织或瑞士日内瓦的CERN几乎完成,可能会出现在前后观察的黑物质颗粒物。这些粒子以及其他标准模型所预测的类似的粒子是Maksimović的目光。
摘要带电粒子的重建将是高亮度大型强子对撞机(HL-LHC)的关键计算挑战,其中增加的数据速率导致当前模式识别算法的运行时间大大增加。此处探索的另一种方法将模式识别表示为二次无约束的二进制优化(QUBO),该方法允许在经典和量子退火器上运行算法。虽然提出的方法的总体时间及其缩放量仍待测量和研究,但我们证明,就效率和纯度而言,可以实现LHC跟踪算法的相同物理性能。将需要进行更多的研究以在HL-LHC条件下实现可比的性能,因为增加的轨道密度降低了QUBO轨道段分类器的纯度。
扩散模型在图像生成方面表现出色,但它们的计算量大且训练耗时。在本文中,我们介绍了一种新型扩散模型,该模型受益于量子计算技术,可以减轻计算挑战并提高高能物理数据的生成性能。全量子扩散模型在前向过程中用随机酉矩阵取代高斯噪声,并在去噪架构的 U-Net 中引入变分量子电路。我们对来自大型强子对撞机的结构复杂的夸克和胶子喷流数据集进行了评估。结果表明,全量子和混合模型在喷流生成方面可与类似的经典模型相媲美,凸显了使用量子技术解决机器学习问题的潜力。
利用 Lehmann-Symanzik-Zimmermann 约化公式,我们提出了一种新的通用框架,用于以完全非微扰的方式使用量子计算机计算量子场论中的散射振幅。在这个框架中,只需要构建零动量的单粒子状态,不需要入射粒子的波包。该框架能够结合束缚态的散射,非常适合涉及少量粒子的散射。我们预计该框架在应用于独有的强子散射时会具有特殊优势。作为概念证明,通过在经典硬件上进行模拟,我们证明了在单味 Gross-Neveu 模型中,从我们提出的量子算法中获得的费米子传播子、连通费米子四点函数和费米子-反费米子束缚态的传播子具有实现 Lehmann-Symanzik-Zimmermann 约化公式所必需的所需极点结构。
摘要 本文总结了在以 s 通道中的介质粒子交换为特征的理论模型背景下寻找费米子暗物质候选者的工作。所考虑的数据样本包括大型强子对撞机在其第 2 次运行期间以√ s = 13 TeV 的质心能量进行的 pp 碰撞,由 ATLAS 探测器记录,对应能量高达 140 fb − 1。结果的解释基于简化模型,其中新的介质粒子可以是自旋为 0,与费米子进行标量或伪标量耦合,也可以是自旋为 1,与费米子进行矢量或轴矢量耦合。排除限是从各种搜索中获得的,这些搜索的特点是最终状态以共振方式产生标准模型粒子,或产生与大量缺失横向动量相关的标准模型粒子。
摘要:利用 (3+1)-D 流体动力学模型 CLVisc,我们研究了 200 GeV 下 Au+Au、Ru+Ru 和 Zr+Zr 碰撞中产生的轻强子的定向流 ( )。系统地研究了倾斜能量密度、压力梯度和沿 x 方向的径向流的演变。结果表明,初始火球的逆时针倾斜是最终轻强子定向流的重要来源。对 RHIC 中心和中中心 Au+Au 和等量异位素碰撞中的轻强子定向流进行了很好的描述。我们的数值结果显示,在不同碰撞系统中,轻强子具有明显的系统尺寸依赖性。我们进一步研究了原子核结构对定向流的影响,发现对于轻强子来说,对具有四极子变形的原子核来说,定向流不敏感。
粒子物理学是一门科学分支,旨在通过研究物质和力的最基本成分来了解自然界的基本规律。这可以在受控环境中使用粒子加速器(如大型强子对撞机 (LHC))或在不受控环境中(如宇宙中的灾难性事件)完成。粒子物理学的标准模型是数十年理论工作和实验的成果。虽然它是一种非常成功的有效理论,但它不允许重力的积分,并且已知有局限性。粒子物理学的实验需要大量复杂的数据集,这对数据处理和分析提出了特殊的挑战。最近,机器学习在物理科学中发挥了重要作用。特别是,我们观察到深度学习在粒子物理学和天体物理学的各种问题中的应用越来越多。超越典型的经典
摘要 本文总结了在以 s 通道中的介质粒子交换为特征的理论模型背景下寻找费米子暗物质候选者的工作。所考虑的数据样本包括大型强子对撞机在其第 2 次运行期间以√ s = 13 TeV 的质心能量进行的 pp 碰撞,由 ATLAS 探测器记录,对应能量高达 140 fb − 1。结果的解释基于简化模型,其中新的介质粒子可以是自旋为 0,与费米子进行标量或伪标量耦合,也可以是自旋为 1,与费米子进行矢量或轴矢量耦合。排除限是从各种搜索中获得的,这些搜索的特点是最终状态以共振方式产生标准模型粒子,或产生与大量缺失横向动量相关的标准模型粒子。