CRBX01光纤中继器模块每个远程链接最多可支持60 hn800设备。光纤HN800总线是一个星形的(点对点),每个控制器最多8个遥控链接。每个远程链接最多支持60 HN800设备(SD系列IO或通信模块。使用带有CRBX01的62.5/125 µm多模式光纤电缆,每个链路最多可长3.0 km。
Ashutosh Mishra 博士于 2018 年获得印度理工学院 (BHU) 瓦拉纳西电子工程系博士学位。他曾在印度国家技术学院 Raipur 分校担任电子与通信工程助理教授。他是韩国国家研究基金会通过韩国科学与信息通信技术部提供的 2019 年韩国研究奖学金 (KRF) 的获得者。目前,他在韩国延世大学无缝交通实验室担任研究员。他的研究兴趣包括智能传感器、智能系统、自动驾驶汽车和人工智能等。
n(3 + 0.002 lg n)逻辑 /抽象盘(也是2N)逻辑Qubits×2(d + 1)2个物理量子; d =代码区。= 27对于n = 2048 n 2(500 + lg n)toffoli门(“算术操作”)n 3(0.3 + 0.0005 lg n)测量深度(“时间”)[Häner等人,2020年,2020年]估计8n + 10.2 lg n逻辑Qubits n lg n逻辑Qubits对于N级纤维纤维纤维cur。破坏椭圆曲线在类似的经典安全级别似乎更容易。
我们目前正在AI中经历关键时刻,这种趋势正在迅速扩展到各个部门,并且可能对社会,企业和政府产生巨大的影响。这一激增主要是由绩效的重大增强驱动的,几乎任何专业都可以通过合并AI技术来实现。因此,未能采用这些能力的实体可能很快发现自己处于竞争不利的位置。应对这种不断增长的需求,各种开发人员和公司正在积极将AI嵌入常用平台,例如桌面和移动操作系统(OS)。有些人甚至正在开发专门的硬件,以提高这种变革性技术的效率,以确保AI工具对更广泛的受众更容易获得和有效。
多年来,单板计算机 (SBC) 领域的发展一直在不断加快。它们在计算性能和功耗之间实现了良好的平衡,这通常是移动平台所必需的,例如用于高级驾驶辅助系统 (ADAS) 和自动驾驶 (AD) 的车辆应用。然而,对更强大、更高效的 SBC 的需求日益增长,这些 SBC 可以实时运行功耗密集型深度神经网络 (DNN),还可以满足必要的功能安全要求,例如汽车安全完整性等级 (ASIL)。ZF 正在开发“ProAI”,主要用于运行强大而高效的应用程序,例如多任务 DNN,此外,它还具有 AD 所需的安全认证。在这项工作中,我们基于功耗密集型多任务 DNN 架构 Multitask-CenterNet,就 FPS 和功率效率等性能指标比较和讨论了最先进的 SBC。作为一款汽车超级计算机,ProAI 实现了性能和效率的完美结合,其每瓦 FPS 数量几乎是现代工作站笔记本电脑的两倍,几乎是 Jetson Nano 的四倍。此外,根据基准测试期间的 CPU/GPU 利用率,还显示 ProAI 上仍有剩余电量用于执行进一步更复杂的任务。
本文由 SCSP 高级研究员 Rick Switzer 撰写,他正在美国国务院休假一年。在加入 SCSP 之前,Rick 是国家情报大学的国务院客座教授,教授有关中国经济和创新体系的研究生课程。Rick 还曾担任国务卿政策规划委员会成员。2018 年至 2019 年,他担任国防部高级国务院顾问,与空军和陆军合作。此前,他曾担任中国驻北京大使馆环境、科学、技术和卫生公使衔参赞,该大使馆是世界上最大的科学部门。在加入政府之前,Rick 共同创办了一家无线技术初创公司,并在加州大学进行创新政策研究。
摘要 - 专门的深度学习(DL)加速器和神经形态处理器的出现为将深度和尖峰神经网络(SNN)算法应用于医疗保健和生物医学应用的新企业带来了新的机会。这可以促进医学互联网系统(IoT)系统和护理点(POC)设备的进步。在本文中,我们提供了一个教程,描述了如何使用各种技术,包括新兴的回忆设备,可编程的门阵列(FPGA)和互补的金属氧化物半导体(CMOS),可用于开发有效的DL加速器,以解决各种诊断诊断,模式识别的诊断,信号过程和信号过程中的各种问题。此外,我们探讨了尖峰神经形态处理器如何补充其DL对应物以处理生物医学信号。该教程通过应用于医疗保健领域的大量神经网络和神经形态硬件的大量文献进行了研究。我们通过执行将传感器融合信号处理任务与计算机视觉相结合的传感器融合信号处理任务来标记各种硬件平台。在推理潜伏期和能量方面进行了专用神经形态处理器和嵌入AI加速器的比较。最后,我们对领域的分析进行了分析,并分享了各种加速器和神经形态处理器引入医疗保健和生物医学领域的优势,缺点,挑战和机遇的观点。
我们小组率先在 LHC 的高能物理分析中使用量子机器学习 (QML)。我们已在门模型量子计算机模拟器和硬件上成功将几种 QML 分类算法应用于 ttH(与顶夸克对相关的希格斯粒子生成)和希格斯粒子到两个μ子(希格斯粒子与第二代费米子的耦合)这两项最近的 LHC 旗舰物理分析。模拟研究已使用 IBM Quantum Framework、Google Tensorflow Quantum Framework 和 Amazon Braket Framework 进行,并且我们已实现良好的分类性能,其性能类似于目前在 LHC 物理分析中使用的经典机器学习方法,例如经典 SVM、经典 BDT 和经典深度神经网络。我们还使用 IBM 超导量子计算机硬件进行了研究,其性能令人鼓舞,并且接近 IBM 量子模拟器的性能。此外,我们将研究扩展到其他 QML 领域,例如量子异常检测和量子生成对抗,并已取得一些初步成果。此外,我们还使用 NVIDIA cuQuantum 和 NERSC Perlmutter HPC 克服了大量子比特(25 个量子比特或更多)和大量事件情况下的密集计算资源挑战。