摘要:建筑物占全球能源消耗的近一半,而暖通空调 (HVAC) 系统消耗了约 40% 的总建筑能源。传统的 HVAC 控制器无法应对占用率和环境条件的突然变化,因此能源效率低下。尽管传统楼宇自动化系统的建筑热响应模型过于简单,占用传感器也不精确,但对更高效、更有效的无传感器控制机制的研究仍然完全不够。本研究旨在开发一种基于人工智能 (AI) 的以占用者为中心的 HVAC 制冷控制机制,该机制不断改进其知识,以提高多区域商业建筑的能源效率。这项研究使用了土耳其伊斯坦布尔一家购物中心两年的占用率和环境条件数据。研究模型包括三个步骤:预测每小时占用率、开发新的 HVAC 控制机制以及通过模拟比较传统和基于 AI 的控制系统。确定商场占用率的因素后,使用真实数据和人工神经网络 (ANN) 进行每小时占用率预测。借助上一阶段获得的占用率数据、建筑特征和实时天气预报信息,开发了一种无传感器 HVAC 控制算法。最后,使用 IDA 室内气候和能源 (ICE) 模拟软件对传统和基于 AI 的 HVAC 控制机制进行了比较。结果表明,将 AI 应用于 HVAC 操作可节省至少 10% 的能耗,同时为居住者提供更好的热舒适度。本研究的结果表明,所提出的方法可以成为可持续发展的非常有利的工具,并且随着方法的改进,也可以用作独立的控制机制。
而不是产生热量,而是地热系统将热量从一个地方传递到另一个地方。通常称为封闭环系统的热交换器被埋在地面中,并通过一系列管道循环水基溶液。该解决方案捕获了存储的太阳能温暖,并将其交给房屋中的单元。
摘要 全球变暖是能源领域面临的最大挑战和最重要的问题之一。随着社会对能源的需求不断增加,必须继续减少对环境的影响才能实现全球目标。通过重新利用现有基础设施并将其转化为热能储存,可以显著加速城市能源所需的脱碳。在当今的瑞典,最常见的热源是区域供热,约占所有供热的 50%。在向更可持续的社会和能源系统转型的过程中,区域供热一直被认为是一种有效的解决方案,而且现在仍然如此。区域供热网络允许使用原本会被浪费的能源。我们代表 Norrenergi AB 进行了这项研究,目的是填补有关 Saltsjötunnel 和 Solnaverket 岩洞热水储存潜力的现有知识空白。在这项研究中,Saltsjötunnel 和岩洞被评估为潜在的热水热能储存。通过进行彻底的文献综述以及数值模拟和计算,评估了隧道和岩洞作为热能储存的用途。结果表明,Saltsjötunnel 内很难出现热分层,同时提出并讨论了将洞穴用作混合储存器的替代用途。岩石洞穴更适合转换为热能储存器,但应进行进一步研究以制定最佳策略。进行的研究还表明,在初始阶段,两个储存器预计都会有大量热量损失,并且在最初几年会急剧下降,大约 10 年后趋于稳定。虽然本研究中评估的两种能源/燃料(电力和颗粒)以及 Norrenergi 购买的能源/燃料都带有绿色标签,但进一步分析表明,电力对环境的影响最小。研究得出结论,将现有的地下洞穴转换为热能储存器可能会对 Norrenergi 的供热和供冷可持续性产生积极贡献。如果是这样,它将允许更有效地利用市政资产,储存多余的热量并以可持续的方式最大限度地减少碳密集型 DH 生产。因此,对于其他基于区域供热的城市能源系统而言,这可以看作是一种值得考虑的缓解气候影响的有趣技术。
家用热水供暖占多户建筑总能耗的 32%,是实现脱碳的重要机会。我们进行了广泛的市场评估,以了解和记录全美多户建筑家用热水电气化的主要技术和经济障碍。通过该计划,我们进行了 77 次访谈,以了解改造和新建场景中热水系统电气化的主要市场驱动因素和技术挑战。受访者涵盖了热水系统生态系统中的广泛利益相关者,包括供应商、制造商、设计师、业主、公用事业公司和开发商。本文记录了关键的访谈要点,包括广泛的市场障碍、技术挑战和热门技术属性列表,这些属性可以为电热水器研究、开发和部署工作提供相关的设计标准。在经济和能源效率方面,受访者绝大多数提到空间限制、冷空气排放以及缺乏关于分布式与集中式设计选择的明确指导是大规模采用电热水器的主要挑战。业主和开发商寻求占地面积最小的系统,以最大限度地提高可出租空间和利润。此外,分布式热泵解决方案应平衡管道成本,以减少冷排气进入空调区域。最后,市场需要明确的指导,以选择分布式还是中央电热水系统。
在实验中评估 MRI 扫描期间植入物的安全性时,传感器放置的位置至关重要。使用测量和有限元建模的组合来评估测量对传感器放置的敏感性,以评估一组校准圆柱体末端的温度升高。模拟使用 COMSOL Multiphysics 创建的耦合热电磁模型来虚拟复制测量条件。评估了不同长度和直径的圆柱形植入物的参数模型中的热梯度,以量化在估计的温度测量不确定度内测量植入物加热所需的传感器放置精度。通过这种方式,我们旨在增强对 MRI 中植入物加热的实验程序和安全标准的要求的理解。
印度尼西亚是一个热带国家,全年太阳辐射强度相对稳定,每天 10 到 12 小时,平均 4.8 kWh/m²/天。这一巨大潜力可用于加热沐浴用水。基于太阳能集热器的热水技术现已在商业市场上广泛使用。此外,太阳辐射的热能存储是使用显热进行的,需要很大的体积。假设下午才用水,那么加热后的水就会储存在管子里。在几项研究中,人们使用了相变材料 (PCM) 来最大限度地提高太阳辐射的热能存储 (TES)。此外,PCM 使用潜热来吸收和释放热量。这会根据太阳能集热器产生的水温进行调整,达到 70°C。因此,使用的潜在 PCM 是固体石蜡,它在市场上随处可见,熔化温度为 40° 至 50°C。这项研究是在使用 80 厘米 x 50 厘米平板集热器的太阳能热水系统上进行的,并使用石蜡进行热能储存。同时,热交换器使用一根直径为 1 英寸的管子串联起来,管长为 50 厘米,有 36 根棒。所用石蜡的质量为 15 公斤或 17.7 升。此外,测试是在水的流速变化下进行的,即:2、3 和 4 升/分钟,太阳辐射为:997.5 W/m²、1183 W/m² 和 1399.8 W/m²。从结果来看,在 15 公斤的 PCM 石蜡中,热能储存过程耗时 3.2 小时,总储存能量为 3.6 MJ。此外,1,399.8 W/m² 的太阳辐射被用作能源,流速为 4 升/分钟的水作为热传递介质。因此,这种辐射对于向 PCM 的传热过程有非常显著的影响,而 2 到 4 lpm 的流速则没有。
摘要:本文研究了包括风力涡轮机、内燃机和绝热压缩空气储能系统的混合能源综合体的优化设计。提出了一种新颖的双层优化策略,用于基于技术经济考虑优化系统各组件的容量和运行功率。本文介绍了储能系统组件部分负荷运行对最佳额定功率和工作策略的影响的信息和讨论。事实证明,非设计特性对混合系统的效率和经济性产生了巨大的负面影响。当系统在部分负荷条件下运行时,压缩空气储能系统的效率在夏季降低约 21%,在冬季降低约 8.9%。实施所提出的双层优化策略时,系统的运行成本显着降低。
摘要:电磁 (EM) 加热是一种将可再生能源(例如光伏太阳能和风能)储存到含水层的新兴方法。我们研究捕获的能量如何在六个月内提高原型深层含水层的温度,然后研究在连续六个月内可以回收储存的能量的程度。以恒定流速注入的水同时使用在 2.45 GHz 水自然共振频率下工作的高频电磁微波发射器加热。耦合的储层流和 EM 加热使用达西方程和能量平衡方程描述。后者包括一个考虑 EM 波传播和吸收的源项,使用麦克斯韦方程单独建模。这些方程通过 Galerkin 最小二乘有限元法进行数值求解。使用从受控实验室实验中获得的 EM 加热输入数据验证了该方法,然后将其应用于含水层。我们发现,经过六年的交替储存和回收,考虑到根据现场数据估算的实际热损失,注入能量的回收率高达 77%。即使热损失增加了两倍,在这种情况下,注入能量的回收率也高达 69%。这表明,井下电磁加热是一种非常有效的可再生能源储存方法,能够帮助解决其固有的间歇性问题。
摘要:电磁 (EM) 加热是一种将可再生能源(例如光伏太阳能和风能)储存到含水层的新兴方法。我们研究捕获的能量如何在六个月内提高原型深层含水层的温度,然后研究在连续六个月内可以回收储存的能量的程度。以恒定流速注入的水同时使用在 2.45 GHz 水自然共振频率下工作的高频电磁微波发射器加热。耦合的储层流和 EM 加热使用达西方程和能量平衡方程描述。后者包括一个考虑 EM 波传播和吸收的源项,使用麦克斯韦方程单独建模。这些方程通过 Galerkin 最小二乘有限元法进行数值求解。使用从受控实验室实验中获得的 EM 加热输入数据验证了该方法,然后将其应用于含水层。我们发现,经过六年的交替储存和回收,考虑到根据现场数据估算的实际热损失,注入能量的回收率高达 77%。即使热损失增加了两倍,在这种情况下,注入能量的回收率也高达 69%。这表明,井下电磁加热是一种非常有效的可再生能源储存方法,能够帮助解决其固有的间歇性问题。
进入门槛低。虽然经典的基于胶带的剥离方法易于学习,但在扩展方面受到严重限制。[1,2] 理想情况下,不仅应保持起始晶体的高质量,而且其横向尺寸也应反映在剥离产率中。在这里,金介导的剥离开始大放异彩,[3–8] 其中干净光滑的金表面提供了必要的相互作用,以剥离整个层状材料阵列。[4,5] 所得单层区域主要受母晶区域限制,接近 1 的剥离产率,从而允许大规模单层作用。[3,9–11] 这种相互作用本质上是非共价的,并且高度依赖于金表面的状况,即使是轻微的污染也会降低剥离产率。 [5] 最近,界面应变被认为是金介导剥离成功的另一个关键因素,通过破坏层间堆叠促进单层剥离。[12,13] 如前所述,将金的成功剥离扩展到其他贵金属被证明是困难的。[12] 以 MoS 2 为例,按照纯结合能论证,其他几种贵金属应该能够实现类似的性能。然而,金仍然无人能及,与下一个最佳竞争对手银相差两个数量级。[12] 其他金属(如铂、钯和铜)的表现甚至更差。[12] 这些金属性能不佳的原因是缺乏抗氧化性和金属贵重性降低。[12] 然而,银的表现优于铂和钯,使其成为所述趋势的异常值。这一例外是由于晶格失配导致 MoS 2 /Ag 界面处应变过大。不过,较大的应变分散暗示了应变不均匀,这是由于银界面的氧化造成的。很明显,成功的金属介导剥离的两个关键因素是均匀施加在界面上的大界面应变和无氧化物金属表面的清洁度。[5,12] 平衡这两个因素是高单层剥离产量的关键,迄今为止这对银来说很难做到。金通过高抗氧化性和在剥离前精心准备新鲜表面来实现这一点。获得适合此任务的金属表面的一种方法是模板剥离。[14,15] 使用热蒸发在光滑的模板(例如抛光硅晶片)上覆盖一层薄薄的金属层(≈ 200 纳米)。该膜可以通过