第二章:量子力学 37–56 2.1 引言 ...................... 37 2.2 海森堡不确定性原理及其物理意义 ...................... 38 2.2.1 海森堡不确定性原理的表述 ........................ 38 2.2.2 海森堡不确定性原理应用于位置和动量 ........................ 38 2.2.3 海森堡不确定性原理应用于能量和时间 ........................ 38 2.2.4 图示:海森堡显微镜 ........................ 39 2.2.5 物理意义 ........................ 40 2.3 不确定性原理的应用 ........................ 40 2.3.1 为什么电子不能存在于原子核内? ........................40 2.4 波函数、性质及物理意义 ...................... 41 2.4.1 波函数 ...................... 41 2.4.2 波函数的性质 ...................... 41 2.4.3 物理意义 ...................... 41 2.5 波函数的概率密度及归一化 ........................ 41 2.6 一维、非时间薛定谔波动方程的建立 ........................ 41 2.6.1 薛定谔波动方程 ........................ 41 2.6.2 推导 ........................................ 42 2.6.3 本征值与本征函数 ........................ 43 2.7 薛定谔波动方程的应用 ........................ 43 2.7.1 无限深盒子中的粒子 ........................ 43 2.7.2 无限深势阱中粒子的能量本征值与函数深度 ........44 2.7.3 自由粒子的能量特征值 ........46 已解决的问题 ........46 练习 ........51
量子计量学在科学和技术中具有许多重要的应用,从频率表格到引力波检测。量子力学对测量精度施加了基本限制,称为Heisenberg限制,这是无噪声量子系统可以实现的,但通常无法实现遇到噪声的系统。在这里,我们研究了如何通过量子误差校正来提高测量精度,这是一种保护量子系统免受噪声影响影响的一般方法。我们发现,假设可以使用噪音无噪声的Ancilla系统,并且可以执行这种快速,准确的量子处理,则可以使用受马尔可夫噪声的量子探针来实现Heisenberg极限。当满足功能的条件时,可以通过求解半有限的程序来找到达到最佳精度的量子误差校正代码。我们还表明,当Hamiltonian和错误操作员通勤时,不需要噪音无噪音。最后,我们提供了两个明确的量子传感器的原型示例:量子量和有损失的骨气模式。
4 正则量化:玻色子 17 4.1 海森堡群及其表示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
量子力学 (QM) 的起源可以追溯到 1900 年,当时马克斯·普朗克引入了作用量子,并因此提出了离散能量的非经典概念。1905 年,阿尔伯特·爱因斯坦成功应用量子假设解释光电效应,1913 年尼尔斯·玻尔发展了氢原子模型,此后,维尔纳·海森堡得以发展一种封闭、一致且连贯的数学形式,能够以不变的方式解释实验室中实际观察到的线强度。玻恩和约当认识到海森堡使用的密集数据表实际上是矩阵,而奇怪的乘法规则则揭示了它们的非交换结构。事实上,在寻找描述量子的方法时,海森堡重新发现了一个众所周知的数学领域,即矩阵代数。因此,让我们首先介绍一些有关矩阵的概念和定义。 n × n 复数矩阵是 n × n 个复数的数组。2 × 2 实数矩阵的示例为 1 3 2 − 1
摘要:利用量子纠缠超越标准量子极限甚至达到海森堡极限,是量子计量学的圣杯。然而,量子纠缠是一种宝贵的资源,并非没有代价。制备大规模纠缠态所需的额外时间开销引发了人们对海森堡极限是否从根本上可以实现的担忧。在这里,我们发现了 Lieb-Robinson 光锥为量子 Fisher 信息增长设定的通用速度极限,以表征量子资源态在制备过程中的计量潜力。我们的主要结果建立了量子计量学的强精度极限,考虑到多体量子资源态制备的复杂性,并揭示了在具有有界单点能量的一般多体晶格系统中达到海森堡极限的基本约束。它使我们能够识别出量子多体系统的基本特征,这些特征对于实现量子计量学的量子优势至关重要,并在多体量子动力学和量子计量学之间建立了有趣的联系。
我们采用了最近开发的功能性重归其化组方法,用于自旋系统,即所谓的Pseudo Majorana功能重归其化组,以研究有限温度下的三维自旋1 /2 Heisenberg模型。我们在简单的立方和pyrochlore晶格上研究未施工和沮丧的海森堡系统。将我们的结果与其他量子多体技术进行了比较,我们将降低了我们方法的高定量精度。,对于未铺设的类似于立方晶格的抗fiferromagnet排序,从一环数据的有限尺寸缩放中获得的温度偏离了误差控制的量子蒙特卡洛的结果约为5%,我们确定了我们的数据一致性,使我们的数据与既定的关键指标n cytermention n dimementialsientialsentions n dimensiential Heissen nisery Heisenberysensen concection concejeity concection concection。由于PMFRG的产生与QMC相吻合,但在系统沮丧时仍然适用,接下来,我们将Pyrochlore Heisenberg Antyromagnet视为一种典型的磁性磁性系统,并限制了我们两层静态同质性易感性与其他方法的近乎完美的一致性。我们进一步研究了由于量子和热闪光的结果,在自旋结构因子中的捏合点扩大,并在外推极极限t→0中进行了有限宽度。虽然向更高循环订单的扩展虽然有系统地改善了我们对磁性无序系统的方法,但在存在磁性或磁或者存在下增加ℓ时,我们也讨论了微妙的方法。总体而言,伪主要的功能重新归一化组是在量子磁性中具有强大的多体技术,并具有许多可能的未来应用。
代数方式:克利福德、海森堡和狄拉克对量子基础的遗产。BJ Hiley。2024 年 3 月 1 日摘要。罗杰·彭罗斯两周前的演讲得出结论,广义相对论(等效原理)和量子力学(叠加原理)的基本原理之间的冲突导致了两个现实,一个是经典的,一个是量子的。该论点基于薛定谔图景。在这次演讲中,我着手表明,如果使用海森堡图景,那么只有一个现实。论证从海森堡群结构开始,该结构具有经典和量子域的基本正交和辛对称性。克利福德认识到群在古典物理学中的作用,它在产生众所周知的正交泡利、狄拉克和彭罗斯扭子代数方面起着根本性的作用。辛对称性隐藏在冯·诺依曼的一篇被忽视的论文中,而冯·诺依曼实际上发现了 Moyal 星积代数。冯·诺依曼的论文导致了 Stone-von Neumann 定理,该定理表明,各种图像、薛定谔、海森堡、相互作用等在幺正变换下是等价的。我将展示 Bohm 版本的非相对论薛定谔方程是如何从星积代数中产生的。该乘积必然会引入一种新的能量质量,即“量子势能”,DeWitt (1952) 表明其几何起源与标量曲率张量有关。该结构揭示了共形重标度出现背后的原因,希望能够更好地理解静止质量问题。
量子时间动力学 (QTD) 被认为是近期量子计算机量子霸权的一个有前途的问题。然而,QTD 量子电路会随着时间模拟的增加而增长。本研究重点模拟具有最近邻相互作用的一维可积自旋链的时间动力学。我们证明了在用于模拟某些类一维海森堡模型汉密尔顿的时间演化的量子电路中存在反射对称性,这是通过量子杨-巴克斯特方程实现的,以及如何利用这种对称性来压缩和产生浅量子电路。通过这种压缩方案,量子电路的深度与步长无关,仅取决于自旋数。我们表明,对于本研究中研究的海森堡模型汉密尔顿量,压缩电路的深度严格是系统尺寸的线性函数。因此,压缩电路中的 CNOT 门数量仅与系统大小成二次方关系,这允许模拟非常大的 1D 自旋链的时间动态。我们推导出海森堡汉密尔顿量不同特殊情况的压缩电路表示。我们通过在量子计算机上进行模拟来比较并证明这种方法的有效性。
量子时间动力学(QTD)被认为是近期量子计算机上量子至高无上的有前途的问题。然而,随着时间的模拟,QTD量子电路会生长。本研究的重点是模拟与最近的邻居相互作用的一维整合旋转链的时间动力学。我们已经证明了用于模拟某些类别的1D海森贝格模型汉密尔顿型汉密尔顿的时间演变的量子电路中存在反射对称性,并通过量子Yang-baxter方程,以及如何利用这种对称性来压缩和产生浅量子量子回路。使用此压缩方案,量子电路的深度独立于步长,仅取决于旋转的数量。我们表明,在当前工作中,所研究的海森堡模型汉密尔顿人的压缩电路的深度严格是系统大小的线性函数。因此,压缩电路中的cnot门数仅与系统大小二次缩放,这是为了模拟非常大的1D旋转链的时间动力学的模拟。我们得出了汉密尔顿汉密尔顿的不同特殊案例的压缩电路表示。我们通过在量子计算机上进行仿真来比较和证明这种方法的效果。