- 需要大量“真实”数据 - 这些数据可能会有偏差 - 示例:统计差异箱的数量 (NDB) - 示例:MuseGAN 客观指标(下一张幻灯片) - 人类专业知识
当前的计划学习方法尚未在几个领域对古典计划者的竞争性能,并且总体绩效较差。在这项工作中,我们构建了提起计划任务的新图形表示形式,并使用WL算法从中生成效率。这些功能与经典的学习方法一起使用,这些方法的参数最多要少2个,并且比对计划模型的最先进的深度学习更快地训练了3个较高的速度。我们的新颖方法WL-goose可靠地从头开始学习启发式方法,并在公平的竞争环境中优于H FF启发式。它还在覆盖范围中的10个域中的4个域中的4分,在计划质量上的10个域中有7个域中的表现或与喇嘛的联系。wl-goose是实现这些壮举的计划模型的第一个学习。此外,我们研究了新颖的WL特征代理方法,以前的理论上的学习构造与计划的逻辑特征之间的联系。
摘要。在本文中,我们提出了一个基于机器学习的启发式启发式,用于分裂和遇到的平行布尔sat求解器。使用代理指标设计的分裂启发式方法,无论它们是看上去的还是看上去的,它是设计的,在优化后,近似于拆分产生的亚构架上的求解器运行时的真实度量。这样的指标的理由是,除了以在线方式计算时,它们已被经验证明是解决方案运行时的绝佳代理。但是,传统拆分方法的设计通常是临时的,并且不利用求解者生成的大量数据。为了解决上述问题,我们提出了一种基于机器学习的启发式启发式启发式,以利用输入公式的特征和在分裂和构架(DC)Par-allel求解器运行期间生成的数据。更准确地说,我们将分裂问题重新制定为排名问题,并为成对排名和计算最低排名变量开发两个机器学习模型。我们的模型可以根据它们的分裂质量比较变量,该变量基于从输入符号的结构属性中提取的一组功能,以及在求解器运行期间收集的动态探测统计。,我们通过在样品公式和其中的变量上的o ffl i ine收集了平行直流求解器的运行时间来得出真实标签。在每个拆分点,我们生成了候选变量的预测排名(成对或最低等级),并将公式分配在顶部变量上。我们在无痛的平行SAT框架中实施了启发式,并在编码SHA-1预映射以及SAT竞赛2018和2019基准的一组密码实例上评估了我们的求解器。与基线无痛求解器相比,我们从最近的SAT比赛(例如TreenGeling)中求出了更多的实例。此外,我们比这些顶级求解器在加密基准测试中要快得多。
物联网(IoT)设备的爆炸爆炸创造了大量的实时数据,需要复杂的数据挖掘方法(DMT),这些方法可以快速提取有价值的见解。管理处理高数据量的计算复杂性,整合各种物联网数据格式,并确保系统可以扩展是最重要的问题之一。模糊动态自适应分类器优化分析(FDACOA)是一种方法,已被建议作为一种方法,以解决数据模式变化,实时处理和数据异质性引起的困难。通过合并自适应模糊逻辑(AFL)和启发式优化,FDACOA提高了数据分类的精度和效率,同时确保该算法可以适应数据流的变化。这种适应性在物联网应用中至关重要,在物联网应用中,数据波动可能会影响分析质量。FDACOA使用动态适应来根据实时反馈改变分类器参数,以提高预测准确性并降低计算成本。优化层微型模糊规则和成员资格功能,以优化跨数据情况的性能。仿真分析证明了该算法以高准确性和低计算成本进行分类的能力。智能医疗保健,工业物联网中的预测维护和智能运输系统使用FDACOA进行实时决策和数据驱动的见解。FDACOA是一种可行的方法,用于在IOT支持的大数据上下文中进行动态数据挖掘,因为它的速度更快,更准确且更适应性地适应性模拟结果。关键字:模糊启发式算法,动态数据挖掘,物联网,集成的大数据环境,分类优化。
选择机器学习模型,用于识别两个类之间的最佳阈值,例如非表达和表现性的MIDI轨道,需要仔细考虑数据的特定char-cher-cher-cher-cher-tecteristical和分析目标。逻辑回归通常受到青睐。该模型通过对给定输入属于两个类之一的概率进行建模,为分类提供了一个清晰,可解释的框架。逻辑回归的输出是0到1之间的连续概率得分,可以直接确定和调整决策阈值。这种简单性和直接性使逻辑回归特别有吸引力,当时主要目标是确定可靠且易于解释的阈值。
当我们在时间压力下或存在很多不确定性的情况下解决问题时,我们往往不会使用严格的逻辑推理。相反,我们倾向于求助于一种或多种思维捷径,也称为启发式方法来解决问题。使用启发式方法的好处是,它们可以让我们快速做出决策,而经历严格的逻辑推理的所有步骤可能会令人精疲力竭且耗时。缺点是启发式推理会导致我们在决策中出现特定类型的错误。研究表明,专家和非专家都使用启发式方法解决各行各业的问题,包括医学、商业、政治、执法,甚至科学。研究人员还发现了多种不同的启发式方法。在本文中,我们将重点介绍三种研究最广泛的启发式方法,并展示它们如何影响现实生活,甚至是生死攸关的决策。
摘要 - 为了有效计算动态变化的环境中的无机器人运动轨迹,我们介绍了一种新型的启发式启发式启发式方法的方法的结果。将机器人环境分为静态和动态元素,我们使用静态零件来初始化确定性路线图,该路线图提供了最终路径成本的下限,如知情的启发式方法,用于快速路径找到。这些启发式方法指导搜索树以探索运行时的路线图。搜索树使用有关动态环境的模糊碰撞检查检查边缘。最后,启发式树利用了从模糊碰撞检查模块中提供的知识,并更新了路径成本的下限。正如我们在现实世界实验中所证明的那样,这三个组件形成的闭环会显着加速计划程序。另一个回溯步骤可确保所得路径的可行性。模拟和现实世界中的实验表明,Hiro可以发现无碰撞的路径比有或没有对环境的先验知识的基线方法快得多。
摘要RRT* - 连接算法通过双重树偏见的生长增强了效率,但是这种偏见可以固有地盲目,可能会影响算法的启发式性能。相比之下,知情的RRT*算法通过利用知情区域来缩小计划问题的范围,从而提高了收敛效率对最佳解决方案。但是,这种方法依赖于可行的道路的先前建立。结合这两种算法可以解决知情RRT所带来的挑战,同时还可以加速融合到最佳性,尽管没有解决双树中的盲偏问题。在本文中,我们提出了一种新颖的算法:动态知识的bias bilt rrt*-connect。该算法以潜在和明确的知情偏置抽样为基础,引入了动态偏置点集,该集合以精确的目标指导双树生长。此外,我们通过引入两个有效捕获算法特征的创新指标来增强算法启发式方法的评估框架。在传统指标中观察到的改进表明,与RRT* - 连接和知情RRT* - 连接相比,所提出的算法具有更大的启发式启发式。这些发现还表明我们评估框架中引入的新指标的生存能力。
对于许多顺序决策问题,通常需要计划才能找到解决方案。但是,对于诸如机器人技术中遇到的域,换句函数(也称为世界模型)通常是未知的。虽然基于模型的强化学习方法学习了可以用于计划的世界模型,但此类方法受到在许多时间段应用模型应用时会累积的错误限制,并且无法重新识别计划的状态。为了解决这些问题,我们介绍了DeepCubeai,这是一种算法,该算法学习了一个世界模型,该模型代表了在离散的潜在空间中代表状态,使用增强学习学习学习一种启发式功能,该功能使用该学识渊博的模型将概括性和目标状态概括,并将学习的模型结合在一起,并将启发式功能与启发式搜索相结合,以解决问题。由于潜在空间是离散的,因此我们可以通过舍入来防止小错误的积累,我们可以通过简单地比较两个二进制向量来重新识别状态。在我们对Rubik Cube,Sokoban,Icelider和DigitJump的像素表示的实验中,我们发现DeepCubeai能够将模型应用于数千个步骤,而不会出现任何错误。此外,DeepCubeai在所有领域中解决了99%以上的测试实例,跨目标状态概括了,并且大大优于贪婪的政策,而贪婪的政策没有与学识渊博的世界模式计划。
使用*搜索有效地解决大型动作空间的问题对人工智能界一直很重要。这是因为A*搜索的计算和内存要求与动作空间的大小线性增长。当*搜索使用通过计算昂贵的函数近似器(例如深神经网络)学习的启发式功能时,这种负担就变得更加卑鄙。为了解决这个问题,我们介绍了Q*搜索,一种搜索算法,该算法使用深Q-networks指导搜索,以利用一个事实,即可以通过一个深层的Q-Network在不明确产生这些孩子的情况下通过深层Q-Network来计算过渡成本的总和和节点子女的启发式值。这大大减少了计算时间,并且仅需要一个迭代生成一个节点。我们在不同的域和操作空间上使用Q*搜索,表明随着动作尺寸的增加,Q*仅从小型运行时间开销。此外,我们的经验结果表明,Q*搜索的速度最高129倍,并且比*搜索的节点最多生成1288倍。最后,尽管从深处神经网络中获得可允许的启发式函数是一个持续的研究领域,但我们证明Q*搜索被保证在启发式功能的情况下找到最短的路径并不能过分估计该州的过渡成本和成本的总和。