我想首先感谢我的博士主管Hae-Young Kee教授。在过去的几年中,她一直指导和指导我,并与我一起度过了最好和最糟糕的时代。我只能希望我从互动中成为一个更好的人,我将永远随身携带她教给我的教训。我要感谢我的监督委员会,杨·博克(Yong-Baek Kim)教授和斯蒂芬·R·朱利安(Stephen R. Julian)教授,以支持整个计划的委员会成员和老师。说我遇到了很多人是轻描淡写的。Whether it be fleshing out physics ideas or casual quality of life interactions I would like to thank in no spe- cific order Andrei Catuneanu, Jacob S. Gordon, Austin Lindquist, Nazim Boudjada, Emily Zinnia Zhang, Vijin Venu, Peihang Xu, CJ Woodford, Daniel Baker, Leonardo Jose Uribe Castano, Sopheak Sorn,Wonjune Choi,Li Ern Chern,Geremia Mas-Sarelli,Adarsh Patri,Eli Bourassa,Eli Bourassa,Ilan Tzitrin,Heung-Sik Kim,Yige Chen,Vijay Shankar Venkataraman,Robert Scha函数Diana Swiecicki,Ilia Khait,Pranai Vasudev,Sergey Eyderman。非常感谢您向Heung-Sik Kim提供无尽的帮助,希望我不会像我怀疑那样打扰您。我相信,如果不是我的朋友,同事和同志Aris Spourdalakis和Dionysia Pitsili-Chatzi,我不会活着,我永远对此表示感谢。在我的努力中,他们无休止的支持,我非常感谢我的母亲Panagiota Karouni和姐姐Stavroula Stephi Stavropoulos。感谢您多年来的支持和支持。我也很感激我的朋友在海洋中,瓦西利斯·罗卡吉(Vasilis Rokaj),彼得罗斯·安德烈亚斯(Petros Andreas Pantazopoulos),乔治·巴塔吉安尼斯(George Batagiannis),perseas christodoulidis,gilho ahn,savvas ros-tadis,savvas rostadis,kalliopi souvatzi,以保持我的精神振奋。最后,我将不感谢物理学系的所有受雇于的工作,他的持久工作使我和其他所有研究生都成为可能。特别感谢伊莎贝拉(Isabella)在该部门的晚上工作之夜是友好的面孔。
亚麻 ( Linum usitatissimum ) 也称为普通亚麻或亚麻籽,在温带地区作为油料和纤维作物种植,可能已被人类使用长达 30,000 年 ( Kvavadze et al., 2009 )。纤维亚麻是栽培亚麻的主要形态类型之一,也是驯化作物中最古老的形态,为人类提供了纤维来源 ( Hickey, 1988 )。据报道,对纤维亚麻 ( 纤维用途 ) 和亚麻籽亚麻 ( 油料用途 ) 的破坏性选择导致植物类型在形态、解剖学、生理学和农艺性能上存在很大差异 ( Diederichsen and Ulrich, 2009 )。纤维亚麻比油料用途亚麻相对较高、分枝较少、种子较少 ( Zhang et al., 2020 )。在过去十年中,纤维工业开发出高价值产品,应用于汽车、建筑工业、生物燃料工业和纸浆(Diederichsen 和 Ulrich,2009 年)。亚麻制成的纺织品在西方国家被称为亚麻布,传统上用于床单、内衣和桌布。亚麻仍然是一种小作物,主要原因是过去十年来其产量过低(Soto-Cerda 等人,2014 年)。准确的参考基因组已成为遗传学研究不可或缺的资源,尤其是对于功能基因图谱和标记辅助选择(MAS)。亚麻基因组的组装可以显著加速亚麻育种的进程。受益于亚麻参考基因组的发布,人们获得了不少与重要农艺性状相关的候选基因 ( Soto-Cerda et al., 2018; Xie et al., 2018a,b; You et al., 2018b; Guo et al., 2020 )。第一个亚麻基因组组装于 2012 年使用 Illumina 短双端和配对读段 (CDC Bethune v1) 发布 ( Wang et al., 2012 )。随后,You 等人使用光学、物理和遗传图谱 (CDC Bethune v2) 将这些碎片化的重叠群锚定到 15 个假分子中 ( You et al., 2018a )。最近还使用短双端读段和 Hi-C 测序发布了三个不同品种的基因组组装 ( Zhang et al., 2020 )。几个月前首次发表了使用错误长读长的亚麻组装体(Dmitriev et al., 2021)。然而,即使使用 Oxford Nanopore 长读技术,所有这些组装体的连续性都非常差。这些组装体最大的重叠群 N50 为 365 Kb。亚麻基因组最近经历了全基因组复制 (WGD) 事件,充满了重复元素(You et al., 2018a)。在使用短读长或错误长读长的组装过程中,同源序列或重复序列之间很容易发生崩溃。使用不同的软件和 Oxford Nanopore 长读长组装体,组装体大小差异很大,证明了这一点(Dmitriev et al., 2021)。
参考:1。Turnbaugh,P。J.和Gordon,J。I.(2009)。核心肠道微生物组,能量平衡和肥胖。《生理学杂志》,587(17),4153-4158。2。Evans,J。M.,Morris,L。S.和Marchesi,J。R.(2013)。 肠道微生物组:虚拟器官在宿主内分泌中的作用。 内分泌学杂志,218(3),R37-R47。 3。 Kau,A。L.,Ahern,P.P.,Griffin,N。W.,Goodman,A。L.,&Gordon,J。I. (2011)。 人类营养,肠道微生物组和免疫系统。 自然,474(7351),327-336。 4。 fijan,S。(2014)。 具有益生菌特性的微生物:最近文献的概述。 国际环境研究与公共卫生杂志,11(5),4745-4767。 5。 Fooks,L。J.和Gibson,G。R.(2002)。 益生菌作为肠道菌群的调节剂。 英国营养杂志,88(S1),S39-S49。 6。 Gareau,M。G.,Sherman,P。M.和Walker,W。A. (2010)。 益生菌和肠道健康和疾病中的肠道菌群。 自然评论胃肠病学和肝病学,7(9),503-514。 7。 O'Mahony,S.M.,Clarke,G.,Borre,Y。E.,Dinan,T。G.和Cryan,J。F.(2015)。 5-羟色胺,色氨酸代谢和脑甲状腺微生物组轴。 行为大脑研究,277,32-48。 8。 Rossi,M.,Amaretti,A。和Raimondi,S。(2011)。 益生菌的叶酸产生。 营养素,3(1),118-134。 9。Evans,J。M.,Morris,L。S.和Marchesi,J。R.(2013)。肠道微生物组:虚拟器官在宿主内分泌中的作用。内分泌学杂志,218(3),R37-R47。3。Kau,A。L.,Ahern,P.P.,Griffin,N。W.,Goodman,A。L.,&Gordon,J。I. (2011)。 人类营养,肠道微生物组和免疫系统。 自然,474(7351),327-336。 4。 fijan,S。(2014)。 具有益生菌特性的微生物:最近文献的概述。 国际环境研究与公共卫生杂志,11(5),4745-4767。 5。 Fooks,L。J.和Gibson,G。R.(2002)。 益生菌作为肠道菌群的调节剂。 英国营养杂志,88(S1),S39-S49。 6。 Gareau,M。G.,Sherman,P。M.和Walker,W。A. (2010)。 益生菌和肠道健康和疾病中的肠道菌群。 自然评论胃肠病学和肝病学,7(9),503-514。 7。 O'Mahony,S.M.,Clarke,G.,Borre,Y。E.,Dinan,T。G.和Cryan,J。F.(2015)。 5-羟色胺,色氨酸代谢和脑甲状腺微生物组轴。 行为大脑研究,277,32-48。 8。 Rossi,M.,Amaretti,A。和Raimondi,S。(2011)。 益生菌的叶酸产生。 营养素,3(1),118-134。 9。Kau,A。L.,Ahern,P.P.,Griffin,N。W.,Goodman,A。L.,&Gordon,J。I.(2011)。人类营养,肠道微生物组和免疫系统。自然,474(7351),327-336。4。fijan,S。(2014)。具有益生菌特性的微生物:最近文献的概述。国际环境研究与公共卫生杂志,11(5),4745-4767。5。Fooks,L。J.和Gibson,G。R.(2002)。益生菌作为肠道菌群的调节剂。英国营养杂志,88(S1),S39-S49。6。Gareau,M。G.,Sherman,P。M.和Walker,W。A. (2010)。 益生菌和肠道健康和疾病中的肠道菌群。 自然评论胃肠病学和肝病学,7(9),503-514。 7。 O'Mahony,S.M.,Clarke,G.,Borre,Y。E.,Dinan,T。G.和Cryan,J。F.(2015)。 5-羟色胺,色氨酸代谢和脑甲状腺微生物组轴。 行为大脑研究,277,32-48。 8。 Rossi,M.,Amaretti,A。和Raimondi,S。(2011)。 益生菌的叶酸产生。 营养素,3(1),118-134。 9。Gareau,M。G.,Sherman,P。M.和Walker,W。A.(2010)。益生菌和肠道健康和疾病中的肠道菌群。自然评论胃肠病学和肝病学,7(9),503-514。7。O'Mahony,S.M.,Clarke,G.,Borre,Y。E.,Dinan,T。G.和Cryan,J。F.(2015)。5-羟色胺,色氨酸代谢和脑甲状腺微生物组轴。行为大脑研究,277,32-48。8。Rossi,M.,Amaretti,A。和Raimondi,S。(2011)。 益生菌的叶酸产生。 营养素,3(1),118-134。 9。Rossi,M.,Amaretti,A。和Raimondi,S。(2011)。益生菌的叶酸产生。营养素,3(1),118-134。9。Malcolm W. Hickey,Alan J. Hillier,G。RichardJago(1986)。乳糖,葡萄糖和半乳糖的运输和代谢。应用环境微生物。; 51(4):825–831。10。Hyronimus,B.,Le Marrec,C.,Sassi,A。H.,&Deschamps,A。 (2000)。 酸和形成孢子乳酸细菌的酸和胆汁耐受性。 国际食品微生物学杂志,61(2),193-197。 11。 Karina Pokusaeva,Gerald F. Fitzgerald,Douwe Van Sinderen(2011)。 双歧杆菌中的碳水化合物代谢。 基因营养。 ; 6(3):285–306。 12。 Whorwell,P。J.,Altringer,L.,Morel,J.,Bond,Y.,Charbonneau,D.,O'Mahony,L。,...&Quigley,E.M。(2006)。 封装的益生菌双歧杆菌Bifidum 35624在肠易激综合征的女性中的功效。 《美国胃肠病学杂志》,101(7),1581-1590。 13。 Bering S.等,(2006年),“乳酸发酵的燕麦汁会增加育龄女性富含植物剂的饮食中的非haem铁的吸收”。 英国营养杂志,96:80-85。 14。 Cunningham Rundles S.等,(2000),“益生菌和免疫反应”。 Am J Gastroenterol。,95:S22-25。 15。 Makras,L.,Van Acker,G。和De Vuyst,L。(2005)。 乳酸杆菌亚种。 paracasei 8700:2降解了表现出不同程度的聚合的粉蛋白型果糖。 应用和环境微生物学,71(11),6531-6537。 16。 (2013)。 17。Hyronimus,B.,Le Marrec,C.,Sassi,A。H.,&Deschamps,A。(2000)。酸和形成孢子乳酸细菌的酸和胆汁耐受性。国际食品微生物学杂志,61(2),193-197。11。Karina Pokusaeva,Gerald F. Fitzgerald,Douwe Van Sinderen(2011)。双歧杆菌中的碳水化合物代谢。基因营养。; 6(3):285–306。12。Whorwell,P。J.,Altringer,L.,Morel,J.,Bond,Y.,Charbonneau,D.,O'Mahony,L。,...&Quigley,E.M。(2006)。封装的益生菌双歧杆菌Bifidum 35624在肠易激综合征的女性中的功效。《美国胃肠病学杂志》,101(7),1581-1590。13。Bering S.等,(2006年),“乳酸发酵的燕麦汁会增加育龄女性富含植物剂的饮食中的非haem铁的吸收”。英国营养杂志,96:80-85。14。Cunningham Rundles S.等,(2000),“益生菌和免疫反应”。Am J Gastroenterol。,95:S22-25。15。Makras,L.,Van Acker,G。和De Vuyst,L。(2005)。乳酸杆菌亚种。paracasei 8700:2降解了表现出不同程度的聚合的粉蛋白型果糖。应用和环境微生物学,71(11),6531-6537。16。(2013)。17。Smokvina,T.,Wels,M.,Polka,J.,Chervaux,C.,Brisse,S.,Boekhorst,J.,...&Siezen,R。J.乳杆菌比较基因组学:朝向物种泛基因组的定义和多样性的剥削。PLOS ONE,8(7),E68731。McFarland,L。V.(2010)。 成年患者的糖疗法的系统评价和荟萃分析。 世界胃肠病学杂志:WJG,16(18),2202。McFarland,L。V.(2010)。成年患者的糖疗法的系统评价和荟萃分析。世界胃肠病学杂志:WJG,16(18),2202。
靶向表型可塑性可预防转移和化疗耐药性疾病的发展 Beatriz P San Juan 1,2,3 , Soroor Hediyeh-Zadeh 4 , Laura Rangel 1,2,3 , Heloisa H Milioli 1,2,3 , Vanina Rodriguez 1,3 , Abigail Bunkum 1 , Felix V Kohane 1,5 , Carley A Purcell 1,2,3 , Dharmesh D Bhuva 4, Anie Kurumlian 1 , Lesley Castillo 1 , Elgene Lim 1,2 , Anthony J Gill 6 , Vinod Ganju 7 , Rachel Dear 2 , Sandra O'Toole 1 , A. Cristina Vargas 8 , Theresa E Hickey 9 , Leonard D Goldstein 1 , John G Lock 5 ,梅丽莎·J·戴维斯 4,10,11和 Christine L Chaffer 1,2,3 1. 加文医学研究所,达令赫斯特,新南威尔士州,澳大利亚 2. 圣文森特临床学院,新南威尔士大学医学院,新南威尔士大学悉尼,新南威尔士州,澳大利亚 3. 金霍恩癌症中心,达令赫斯特,新南威尔士州,澳大利亚 4. 沃尔特和伊丽莎霍尔医学研究所,帕克维尔,维多利亚州,澳大利亚 5. 新南威尔士大学医学院病理学系,新南威尔士大学悉尼,新南威尔士州,澳大利亚 6. 悉尼大学悉尼医学院,悉尼,新南威尔士州,澳大利亚 7. 莫纳什大学,莫纳什,维多利亚州,澳大利亚 8. 道格拉斯汉利莫尔,病理学实验室,麦考瑞大学,悉尼,新南威尔士州,澳大利亚 9. 阿德莱德大学医学院 Dame Roma Mitchel 癌症研究实验室,阿德莱德,南澳大利亚州,阿德莱德 10. 墨尔本大学医学生物学系,帕克维尔,维多利亚州,澳大利亚 11.墨尔本大学,维多利亚州帕克维尔,澳大利亚 通讯作者: 克里斯汀·查弗:c.chaffer@garvan.org.au 梅丽莎·戴维斯:m.davis@wehi.com.au 比阿特丽斯·佩雷斯·圣胡安:b.perez@garvan.org.au 摘要 癌细胞启动表型可塑性程序来推动疾病进展和逃避化疗的损伤,但到目前为止,尚无针对这一过程的经过验证的临床疗法。在这里,我们确定了一种与基底/三阴性乳腺癌低生存率相关的表型可塑性特征,其中雄激素信号传导占主导地位。我们确定抗雄激素疗法可阻断癌症干细胞功能并防止化疗诱导的新癌症干细胞的出现。特别是,抗雄激素药物 seviteronel 与化疗协同作用,增强化疗对原发性和转移性肿瘤生长的抑制并防止化疗耐药性疾病的出现。我们证实细胞质 AR 表达是一种临床表型可塑性生物标志物,可预测生存率低和对化疗反应差,以及对 seviteronel 联合化疗反应良好。这种新的靶向联合疗法证实调节表型可塑性是一种有效的预防和治疗化疗耐药性癌症的策略,具有转化临床潜力。重要性声明目前尚无针对化疗耐药性癌症患者的治愈疗法。我们证明调节表型可塑性可防止三阴性乳腺癌出现化疗耐药性疾病。这是已知的第一个利用表型可塑性的经过验证的临床疗法。此外,我们还确定了一种高效的抗雄激素药物和一种生物标志物,用于选择和治疗最适合这种新疗法的患者。临床试验正在进行中(NCT04947189)。摘要语句阻断表型可塑性是一种有效的靶向治疗策略,用于治疗癌症关键词表型可塑性、化疗耐药性、转移、细胞状态转变、细胞状态调节疗法、非遗传异质性、非甾体抗雄激素、Seviteronel、癌症干细胞、CSC、三阴性乳腺癌、TNBC。
第二,Solar 2,Antipov 2,11,Riley J. Mangan 12,13,14,头盔3,Gracela Mofort 15,16,Laura Carrel 23,Agnes P. Chan 24,Juyun Crawford 19,26,26,26,26,27,Gage H. Gage H. Garcia H. Garcia Gabrielle A. Alexandra P. Lewis 1,Juan F. I.25 25 Szpiech 11,Christian D. Huber 11,Tobias L. Lenz 9,Miriam K. Conchel 41,42,Soojin V. Yi 55,Stefan 26 Canzar 48,Corey T. Watson 57,Erik Garrison 30,Craig B. B. B. B. B. B. B. B. B. B. B. B. B. Lowe 8 8,Mario Ventur 4,Rachel J. O'Neill 10,17,58,Sergey Corren25 25 Szpiech 11,Christian D. Huber 11,Tobias L. Lenz 9,Miriam K. Conchel 41,42,Soojin V. Yi 55,Stefan 26 Canzar 48,Corey T. Watson 57,Erik Garrison 30,Craig B. B. B. B. B. B. B. B. B. B. B. B. B.Lowe 8 8,Mario Ventur 4,Rachel J. O'Neill 10,17,58,Sergey Corren16 Martinez 6 , Patrick Masterson 32 , Rajiv C. McCoy 18 , Barbara McGrath 11 , Sean Mckinney 15 , Britta 17 S. Meyer 9 , Karen H. M. MATT 18 PENNELL 47 , Pavel A. PEvzner 31 , David Porusky 1 , Tamara Potapova 15 , Francisca R. Ringeling 48 , 19 Joana L. Rocha 49 , Oliver A. Ryder 35 , swalti 29 , swarms 1 32 , Edmundo 22 Torres-González 11 , Mihir Trivedi 1, 59 , Wenjie Wei 51, 52 , Julie Wertz 1 , Muyu yang 44 , Panpan 23 Zhang 2 Zhhang Zhang 31 , Sarah A. Zhao 12 , Yixin Zhu 47 , 24 Erich D. Jarvis 37, 53,詹妮弗·L·格顿15,伊克·里瓦斯·冈萨雷斯54,扎卡里·A。16 Martinez 6 , Patrick Masterson 32 , Rajiv C. McCoy 18 , Barbara McGrath 11 , Sean Mckinney 15 , Britta 17 S. Meyer 9 , Karen H. M. MATT 18 PENNELL 47 , Pavel A. PEvzner 31 , David Porusky 1 , Tamara Potapova 15 , Francisca R. Ringeling 48 , 19 Joana L. Rocha 49 , Oliver A. Ryder 35 , swalti 29 , swarms 1 32 , Edmundo 22 Torres-González 11 , Mihir Trivedi 1, 59 , Wenjie Wei 51, 52 , Julie Wertz 1 , Muyu yang 44 , Panpan 23 Zhang 2 Zhhang Zhang 31 , Sarah A. Zhao 12 , Yixin Zhu 47 , 24 Erich D. Jarvis 37, 53,詹妮弗·L·格顿15,伊克·里瓦斯·冈萨雷斯54,扎卡里·A。