摘要 - 由于其在国内和工业领域中的广泛应用,因此在机器人技术中,孔洞操纵一直是一个长期存在的问题。由于感知和建模的进步,可变形的对象操纵吸引了越来越多的关注。本文重点介绍了这些问题的交集,其中必须将一个孔变形以允许钉入口。此任务的常见国内应用是将衣架穿过T恤的领口将其悬挂。我们证明,通过使用来自Gelsight传感器的多模式触觉反馈可以降低问题的复杂性。高分辨率接触检测有助于将掌握到T恤上合适的位置。使用触觉反馈跟踪力轨迹,我们的算法可以操纵大小和刚度的T恤,以使它们的领口封闭衣架。我们的实验结果表明与理论分析保持一致。我们预计我们提出的方法将更广泛地适用于需要同时估算和执行弹性对象的力轨迹的其他问题。
我们试图研究解决黑洞信息悖论的本体论方面。我们对这一悖论的解决产生了几个现在对我们理解量子力学至关重要的概念,这些概念指出所有信息都是守恒的,即使是在量子层面上。如果量子信息是守恒的,永远不会被抹去或摧毁,那么这表明所有信息至少在理论上、最终都是可以从宇宙的事件视界中检索和了解的。从本体论上讲,这支持了宇宙中所有信息的储存库因此必须存在的论点。在此,我们追溯了这一争论的步骤,并得出结论,我们对宇宙的理解指向一个无所不知的实体的存在。
式左侧是具有宇宙常数 Λ 的经典时空 g ab 的通常爱因斯坦张量,而右侧 ⟨ T QFT ab ⟩ 是某个量子态 | Ψ ⟩ 下量子场论的(重正化)应力能量张量的期望值。半经典引力应被视为一种近似,且仅在特定范围内有效。事实上,半经典近似在普朗克尺度附近失效,因为在这个层面上,量子引力效应变得重要,以至于 ( 1 ) 不再可信。另外,方程 ( 1 ) 中的半经典场预计对一般量子态 | Ψ ⟩ (例如宏观叠加态)无效 [3]。然而,当 | Ψ ⟩ 近似为经典态(即相干态)时,半经典场是有效的。即使在有效范围内,半经典引力(尤其是黑洞)的解也很难得到持续研究。很大程度上,这是因为解决(1)相当于解决反作用问题——量子物质如何影响经典几何,反之亦然——这是一个众所周知的困难且开放的问题,因为它需要同时解决几何和量子相关器的耦合系统。通常在三维时空维度和更高的维度 1 中,这个问题是以扰动的方式进行研究的,提供的见解有限,尤其是当反作用效应变大时。这些困难只有在存在大量量子场或场论强耦合时才会加剧,就像量子色动力学和粒子物理学的标准模型一样。可以探索大量强相互作用量子场的物理的一个背景是反德西特/共形场论 (AdS/CFT) 对应 [ 6 ]。AdS/CFT 诞生于弦理论研究,是一个非扰动候选者
在1911年,Kamerlingh Onnes在实验中发现了某些称为“上跨导体”的金属,在过去[1] [1] [1] [2] [2]中发现了零电阻的状态。,如果在t> t c的超级导管的内部存在磁场,则当温度降低到t Meissner效应令人惊讶:在1933年之前,预计超导体会排除磁场,但不会排出磁场。 这是Fara-Day的定律,被称为“ Lippmann的定理” [4] [4] [5]:如果将磁场应用于零电阻材料中,则该材料将通过不让Eld渗透而产生的表面电流来反应,从而使磁场从其室内排除。 ,ever,法拉第定律 / lippmann的定理将预测,如果有限阻力的材料在其内部具有磁场,则将其冷却到零电阻的超导状态时,任何电流都不会流动,并且磁场将保持在内部,甚至在外部磁力源中,磁性磁性也可以恢复。 这不是超导体所做的:超导的金属自发产生一个表面电流,从而从其内部排出磁场[3]。 这似乎违反了法拉第定律。 BCS理论既没有基于电子 - 波相互作用,于1957年由Bardeen,Cooper和Schrieffer [7]提出。 对于其余三分之二,没有公认的理论。Meissner效应令人惊讶:在1933年之前,预计超导体会排除磁场,但不会排出磁场。这是Fara-Day的定律,被称为“ Lippmann的定理” [4] [4] [5]:如果将磁场应用于零电阻材料中,则该材料将通过不让Eld渗透而产生的表面电流来反应,从而使磁场从其室内排除。,ever,法拉第定律 / lippmann的定理将预测,如果有限阻力的材料在其内部具有磁场,则将其冷却到零电阻的超导状态时,任何电流都不会流动,并且磁场将保持在内部,甚至在外部磁力源中,磁性磁性也可以恢复。这不是超导体所做的:超导的金属自发产生一个表面电流,从而从其内部排出磁场[3]。这似乎违反了法拉第定律。BCS理论既没有基于电子 - 波相互作用,于1957年由Bardeen,Cooper和Schrieffer [7]提出。对于其余三分之二,没有公认的理论。伦敦兄弟[1,6]于1935年提出的伦敦方程式提供了对超导体的磁性行为的现象描述,但并未解释supoducducdors如何设法违反法拉第定律。bcs理论提供了超导体的显微镜描述,该描述准确地描述了其许多特性,通常认为它适用于称为“常规超导体”的材料,其中包括所有超导元件和许多化合物。大约有30种不同类别的超导材料[8],其中大约三分之一被同意为“常规超导体”。该领域是开放的,以进一步进步。
黑洞是宇宙中最神秘、最极端的物体之一,其研究越来越多地受益于人工智能 (AI) 的进步。黑洞挑战了我们对物理学的理解,从时空的本质到量子力学的极限。通过各种观测方法(包括 X 射线和射电天文学)收集的数据非常复杂,需要复杂的分析工具,而人工智能在这方面显示出了巨大的潜力。人工智能算法,尤其是机器学习 (ML) 和深度学习 (DL) 技术,正在彻底改变天文学家和物理学家分析海量数据集、识别模式和预测黑洞行为的方式。本文探讨了黑洞研究与人工智能的交集,讨论了如何使用人工智能来增强数据处理、模型模拟和黑洞现象的解释。人工智能在黑洞研究中的整合代表了一种变革性的方法,可以实现更精确、更有效的分析,从而更深入地了解这些神秘的物体。
摘要功率分销网络的检查和维护对于有效地向消费者提供电力至关重要。由于电源分配网络线的高电压,手动现场直线操作很难,有风险和不足。本文研究了一个具有自主工具组装功能的功率分配网络实时运营机器人(PDLOR),以替代各种高风险电气维护任务中的人。为了应对PDLOR的动态和非结构化工作环境中工具组装的挑战,我们提出了一个框架,该框架包括深层视觉引导的粗糙本地化以及先验知识以及模糊逻辑驱动的深层确定性策略梯度(PKFD-DPG)高级装配算法。首先,我们提出了基于Yolov5的多尺度识别和本地化网络,该网络使PEG-HOLE可以快速接近并减少无效的探索。第二,我们设计了一个主要的合并奖励系统,其中主线奖励使用事后的经验重播机制,而辅助奖励基于模糊的逻辑推理机制,解决了学习过程中无效的探索和稀疏奖励。此外,我们通过模拟和物理实验来验证提出算法的有效性和优势,并将其性能与其他组装算法进行比较。实验结果表明,对于单芯组装任务,PKFD-DPG的成功率比具有功能的奖励功能的DDPG高15.2%,比PD力控制方法高51.7%。对于多工具组装任务,PKFD-DPG方法的成功率比其他方法高17%和53.4%。
在这一努力中,我们展示了 BHEX 任务时间参考的一种方案的性能:使用目前作为激光干涉仪空间天线 (LISA) 任务的一部分开发的太空级超低噪声激光器,以及光学频率梳,将该激光器的稳定性转移到微波范围以供仪器使用。我们描述了微波下变频的实现,其中 LISA 腔稳定激光器被锁定到光学频率梳,以将光频率降低到 100 MHz。使用参考独立实验室超稳定激光系统的相位噪声分析仪测量 100 MHz 信号的分数频率稳定性。我们展示了该实验的结果,表明该系统的性能符合 BHEX 要求。
摘要:钙钛矿太阳能电池 (PSC) 引起了越来越多的研究兴趣,但其性能取决于材料的选择和所用的工艺。这些材料通常可以在溶液中处理,这使得它们非常适合卷对卷加工方法,但它们在环境条件下的沉积需要克服一些挑战以提高稳定性和效率。在这篇评论中,我们重点介绍了钙钛矿材料以及空穴传输层 (HTL) 和电子传输层 (ETL) 材料的光子固化 (PC) 的最新进展。我们介绍了如何使用 PC 参数来控制钙钛矿 HTL 和 ETL 层的光学、电学、形态和结构特性。强调这些进步对钙钛矿太阳能电池的重要性可以进一步凸显这项研究的重要性,并强调其在创造更高效和可持续的太阳能技术方面的重要作用。
要仔细理解这些论点,我们首先需要理解一个依赖于观察者的思想实验。2012 年,Almheiri、Marlot、Polchinski 和 Sully (AMPS) 提出了一个思想实验,描述了观察者进入黑洞时会经历什么。回想一下量子场论中的事实,QFT 真空具有大量的短程纠缠。这意味着当观察者接近事件视界并且看到霍金光子从视界出现时,事件视界内就会有一个纠缠光子。可以将其想象为视界周围的一堆贝尔对。现在,如果观察者在穿过视界时没有看到这些贝尔对,他们就看不到平滑的时空,而是看到一堵普朗克能量光子墙,这堵光子墙会瞬间将它们瓦解 [9]。这就是所谓的防火墙。