摘要:气膜冷却技术对提升航空发动机性能、延长使用寿命具有重要意义。随着对气膜冷却效率要求的越来越高,科研人员对冷却孔的精度测量和数字化测量开展了大量工作。基于此,本文概述了气膜冷却技术的重要性及其原理,回顾了冷却孔的演变过程,详细介绍了当前工程场景中采用的传统冷却孔测量方法及其局限性,将数字化测量方法分为探测测量技术、光学测量技术、红外成像技术、CT扫描技术和复合测量技术五种主要类型,并对这五种类型的测量方法及集成的自动化测量平台进行了分析。最后,通过对冷却孔测量方法的归纳与分析,指出了其技术挑战和未来趋势,为后续研究提供参考与指导。
1柔性电子学研究所(SIFE,FUTURE TECHNOGIES),FUJIAN柔性电子的主要实验室,福建师范大学和柔性电子海峡实验室(Slofe),富州,福建350117,中国。2福建师范大学物理与能源学院,富州,福建350117,中国。3功能纳米结构设计和组装的关键实验室,以及福建省纳米材料的省级主要实验室福吉安物质研究所,中国科学院,中国科学院,富士,富士,富士,中国350002。4 Xiamen稀土光电功能材料的主要实验室,Xiamen稀土材料研究所,海克西研究所,中国科学院,Xiamen 361021,中国。5物理,化学和生物学系(IFM),瑞典LinköpingLinköpingUniversity,瑞典。
图1:(a)提高了针对指尖的触觉设备的可用性和最小化,研究人员离开了厚厚的执行器(例如振动电动机),而是专注于薄设备 - 成功的例子是电动刺激。这些可以设计为薄,即使用力膜覆盖了电极膜(例如,合规性或宏观功能),它仍然可以感觉到某些感觉。但是,我们认为这还不够,并且还应平衡触觉设备的损害,从而使感觉到现实世界与它具有虚拟感觉的准确程度。因此,我们提出并评估如何在电动设备中添加孔,从而导致:(1)改善触觉特征的感知; (2)改善掌握任务中的力控制(b)我们的方法显着提高了触觉用户在混合现实中的灵活活动(包括操纵工具)的能力。
图2。我们的用户研究程序包括六个步骤。步骤1-研究简介:为参与者提供了研究的目标,其参与的潜在结果,数据的利用以及参与的优点和缺点。第2步 - 任务问卷:参与者完成了一份预任务问卷,该问卷由两个部分组成,用于衡量其个性和以前的AI系统经验。步骤3-任务简介:参与者介绍了一个场景和对任务的介绍,这些任务需要完成原型。步骤4-练习任务:指示参与者使用解释性调试界面完成练习任务。步骤5-主要任务:主要任务涉及使用解释性调试界面来完成研究任务。步骤6-任务后问卷:要求参与者填写任务后问卷,以衡量参与者的信任,感知的理解和实际理解。
石墨烯,11本质上是一层石墨,具有巨大的电位,具有令人印象深刻的理论能力高达744 mA H G 1,因为它遵循了两侧的单层吸附机制,而不是在石墨中观察到的分期插入反应机制。12–14然而,单层之间的弱范德华相互作用可能会导致不良的聚集,从而导致快速的性能降解和损害循环稳定性。为了减轻重新打击问题,Holey石墨烯及其衍生物已成为有前途的解决方案,引入了具有多种用途的多孔结构。15,16首先,它有效地减少了邻居层之间的弱相互作用,从而防止了团聚和维持结构完整性,还提供了额外的跨平面离子传输通道,从而促进了快速充电/放电过程。17–20,其次,特定的多孔框架可以在锂离子插入/提取过程中适应局部体积变化,从而增强循环。21在开发基于石墨烯的阳极材料的液体材料方面取得了巨大进展。2016年,Alsharaeh等。通过利用涉及Ag纳米颗粒的蚀刻方法,成功合成了孔减少石墨烯(HRGO)。此方法产生了具有特定多孔结构的HRGO,其孔的范围为2 nm至5 nm。所得材料表现出显着的容量,达到了减少石墨烯的2.5倍,并在100次充电/放电周期后表现出令人印象深刻的94.6%可逆能力。22进一步改善骑行
研究量子参考系 (QRF) 的动机是考虑我们在描述物理系统时明确或隐含使用的参考系的量子特性。与经典参考系一样,QRF 可用于相对地定义时间、位置、动量和自旋等物理量。与其经典类似物不同,它相对化了量子系统的叠加和纠缠概念。在这里,我们通过将其追溯到叠加中不同分支之间如何识别配置或位置的问题,为叠加和纠缠的框架依赖性提供了一种新颖的解释。我们表明,在存在对称性的情况下,系统在分支之间是处于“相同”还是“不同”的配置取决于 QRF 的选择。因此,相同性和差异性——以及因此产生的叠加和纠缠——失去了绝对意义。我们将这些想法应用到叠加半经典时空的背景下,并使用四个标量场的巧合来构建不同分支中时空点之间的比较图。这使我们能够确定给定事件是位于叠加时空中的“相同”点还是“不同”点。由于此功能取决于 QRF 的选择,我们认为事件的定位不应被视为事件的固有属性。这缓解了之前提出的担忧,即 QRF 变化可能会对干涉实验产生经验后果,例如 Bose 等人 -Marletto-Vedral 的提议。此外,它意味着在量子控制因果序的平坦和弯曲时空实现中,事件的数量相等。我们以“量子空洞论证”作为爱因斯坦著名空洞论证的量子背景的概括,认为在量子对称性存在的情况下,不仅时空点,而且它们的识别和叠加流形中事件的定位都失去了绝对的物理意义。
摘要:有机发光二极管(OLEDS)被广泛认为是显示和照明技术的前沿技术。现在,全球OLED市场几乎已经成熟,这是由于对智能手机上的出色显示的需求不断上升。 近年来,已经引入并证明了许多策略,以优化孔注入层以进一步提高OLED的效率。 在本文中,阐明了优化孔注入层的不同方法,包括使用合适的孔注入材料来最大程度地减少孔注入屏障并与发射层匹配,并探索新的准备方法以优化孔注入层的结构,等等。 同时,本文可以帮助人们了解当前的研究进展,以及与OLED孔注入层相关的挑战,从而提供了未来的研究方向,以增强OLED的特性。现在,全球OLED市场几乎已经成熟,这是由于对智能手机上的出色显示的需求不断上升。近年来,已经引入并证明了许多策略,以优化孔注入层以进一步提高OLED的效率。在本文中,阐明了优化孔注入层的不同方法,包括使用合适的孔注入材料来最大程度地减少孔注入屏障并与发射层匹配,并探索新的准备方法以优化孔注入层的结构,等等。同时,本文可以帮助人们了解当前的研究进展,以及与OLED孔注入层相关的挑战,从而提供了未来的研究方向,以增强OLED的特性。
2差异几何形状的评论5 2.1歧管,光滑的地图和切线空间。。。。。。。。。。。。5 2.2张量代数(一个点的张量)。。。。。。。。。。。。。。。。。9 2.3张量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.4 Lorentzian度量和Lorentzian歧管。。。。。。。。。12 2.4.1简短的Intermezzo:Lorentz内部产品。。。。。。。。12 2.4.2 Minkowski空间。。。。。。。。。。。。。。。。。。。。。。。15 2.4.3索引升高和降低。。。。。。。。。。。。。。。。。16 2.4.4更多术语。。。。。。。。。。。。。。。。。。。16 2.4.5曲线的长度。。。。。。。。。。。。。。。。。。。。。16 2.4.6时间方向。。。。。。。。。。。。。。。。。。。。。。。17 2.4.7洛伦兹指标的存在。。。。。。。。。。。。。。。18 2.5矢量场和流。。。。。。。。。。。。。。。。。。。。。。。。19 2.6连接。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 2.7平行运输和测量学。。。。。。。。。。。。。。。。。。24 24 2.8扭转张量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.9 Riemann曲率张量。。。。。。。。。。。。。。。。。。。。。。25 2.10 Levi-Civita连接。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25 2.11绑带调整器的对称性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26 2.12 ricci张量。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>27 2.13爱因斯坦方程。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>27 2.14异分析。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。28 2.15指数地图和正常社区。。。。。。。。31 2.16正常坐标。。。。。。。。。。。。。。。。。。。。。。。。。。32 2.17本地洛伦兹几何形状。。。。。。。。。。。。。。。。。。。。。。。33
摘要 - 智能钻孔寻求洞穴是一种有前途的技术,可提高钻孔效率,减轻潜在的安全危害并减轻人类操作员。大多数现有的智能钻臂控制方法依赖于基于反向运动学的分层控制框架。但是,由于反向运动学的计算复杂性以及多个关节的顺序执行效率低下,这些方法通常是耗时的。为了应对这些挑战,本研究提出了一种基于强化学习(RL)的综合钻孔控制方法。我们开发了一个集成的钻臂控制框架,该框架利用参数化策略在每个时间步骤中直接为所有关节生成控制输入,利用关节姿势和目标孔信息。通过将寻求洞穴的任务制定为马尔可夫决策过程,可以直接使用当代主流RL算法来学习寻求洞穴的政策,从而消除了对逆动力学解决方案的需求并促进合作的多关节控制。为了在整个钻井过程中提高钻孔精度,我们设计了一种结合Denavit-Hartenberg联合信息并预览寻求洞穴差异数据的状态表示。仿真结果表明,就寻求洞的准确性和时间效率而言,所提出的方法显着优于传统方法。索引术语 - 强化学习,集成的钻头控制,寻求孔,机器人臂
硫化物电解质通常具有高离子电导率(> 1 ms/cm)LI6 PS 5 Cl(LPSCL; LPSC)是研究最多的硫化物电解质,并且大量可用(〜$ 10/g)