罗温·阿特金森的喜剧杰作《豆豆先生》以伦敦一条荒凉的街道为背景,在深夜里拉开序幕。一束聚光灯出现,主角从空中坠落,合唱团用拉丁语唱道:“看,这个男人是一颗豆子。”豆豆先生站起身,掸掉西装上的灰尘,笨拙地跑进黑暗中。他是一个超凡脱俗的人,一个从天而降的、令人难以理解的东西。鉴于近年来人工智能的奇迹层出不穷,我们可能会认为人工智能就像豆豆先生一样,是从天而降,完全成型,超出了我们的理解范围。然而,这些都不是真的;事实上,我认为人工智能仍处于起步阶段。那么,为什么我们现在会听到关于人工智能的消息呢?我将通过简短(且有偏见的)人工智能历史来回答这个问题,然后讨论作为人工智能革命催化剂的计算技术的进步。本章为我们将在本书剩余部分探讨的模型提供了背景。
摘要 有一些恒星和类地行星被认为年龄超过 100 亿年。在这个星系中,“水世界”和包含咸水海洋的卫星可能很常见。鲸类和灵长类动物的进化可能为其他星球上智慧生命如何进化提供一些线索。最聪明的灵长类动物——智人,其平均脑重(~1350 克)比其他灵长类动物大得多,但比许多鲸类动物的平均脑重小得多,而鲸类动物也被认为非常聪明。本文回顾了导致一小部分灵长类动物而不是脑容量相对较大的鲸类动物(从人类的角度来看)主宰我们的星球的因素,包括语言和工具制造能力。如果在其他星球上,类似鲸类的智慧生物为了适应与地球相似的水生环境而趋同进化,那么它们就不会拥有复杂的工具和技术;而在其他比地球古老得多的星球上,类似灵长类的生物可能已经趋同进化,并且可能早就开发出超越我们自己的技术。
点的扭转角可以通过改变费米能量、拓扑绝缘体收缩宽度和量子阱带隙来进行调控。27但目前还没有关于分子器件扭转角的系统研究。本文基于非平衡格林函数(NEGF)结合密度泛函理论(DFT),28,29研究了由两个V型锯齿边石墨烯纳米带(GNR)电极连接不同扭转角的CuPc分子构成的CuPc分子器件的量子输运性质。通过改变扭转角可以控制器件的局域自旋态和相关的量子输运性质。结果表明,扭转双层CuPc分子(TTBCPM)的HOMO-LUMO能隙、自旋滤波效率(SFE)和自旋相关电导随扭转角变化。当q较大时,电导和SFE的变化趋势几乎相反。当q=0时电导最大,当q=60时SFE最大,提出了这些现象的物理机制,并通过分析透射光谱、分子能级谱和散射态,进一步理解了具有扭转角的量子传输现象。
图1:晶格结构,紧密的结合定义以及单个和耦合Polyyne链的带结构。(a)在Polyyne中较短的键和较长的键之间跳跃术语。c原子在A和B位点由黑色和绿色圆圈表示。应注意,这是晶格结构的卡通图,旨在表明δ1>δ2和所描绘的长度不缩放。实际上,δ2〜0。97δ1。(b)在AA配置中显示的两个与链间跳的关闭链链。c原子用不同的颜色表示。该系统显然具有围绕ZZ'线的反射(平等)对称性或晶格翻译产生的任何其他线路的对称性。等效地,每个单位单元格还有一条奇偶校验对称性(未显示在图中)。垂直虚线表示(a)和(b)的单位单元格。(c)单个和(d)耦合的多扬链的带结构,用于放松的链间分离和AA堆叠。虚线蓝线代表紧密结合,实心绿松石线代表DFT带结构。轨道投影的带结构是为(e)单个和(f)耦合链附近x点附近的X点绘制的。各种轨道对频段的贡献用不同的颜色表示。用绿色虚线显示费米级。在(f)的插图中显示了x点处最高占用分子轨道(HOMO)的带状电荷密度。与(a)中相同的轴方向遵循了插图图。
目标是开发乙酸聚氯乙烯(PVAC)和乙烯乙烯酯(VAE)的杂化IPN网络。在这项研究工作中,有效合成了乙酸乙酸乙烯酯(VAC)/ VAE杂化乳液和乙酸聚乙烯酯(PVAC)。通过调整乙酸乙烯酸盐单体和VAE成分之间的重量比,已经开发出具有多种特征的乳液。使用铅笔硬度,拉伸剪切强度,pH,接触角度测量,差异扫描量升压(DSC)和粘度的测试研究了对膜机械,热和物理正常的影响。添加5.0重量百分比VAE时,在24小时粘合期后,在干燥条件下的拉伸剪切强度降低了18.75%,在湿条件下,耐热性降低了26.29%(按照瓦特91)降低26.29%,而拉伸剪切强度则降低了约36.52%(每204)。还通过接触角度测试证实了原始样本的结果。杂交PVAC乳液中的互穿网络(IPN)形成,因为初级键不会直接附着于PVAC和VAE链上。VAE的添加降低了机械性能(在干燥条件下)和耐热性。接触角分析表明,与常规PVA稳定的PVAC均基均基型粘合剂相比,含有VAE的PVAC粘合剂的水再持续增加。与Virgin PVAC HOMO相比,通过添加VAE,可以增强PVAC乳液聚合的水分。
理论方法(例如量子计算和Monte Carlo(MC)模拟,由于学习结构的相对较快方法,在研究腐蚀抑制剂方面非常重要。在本文中,利用了几种半经验量子计算方法(AM1,PM3和PM6)来研究某些三唑的腐蚀抑制效率(CIE),作为金属腐蚀的抑制剂(降低了降低了降低了至1 m盐酸)。MC模拟技术用于本研究来计算吸附能。优化的基态几何形状,最高占用分子轨道(E HOMO)的能级,最低无占用分子轨道(E Lumo)的能级,吸附能和偶极矩(μ)与三氮化衍生物的CIE相关。建议三个方程式计算CIE。在CIE EXP和CIE计算之间发现了良好的协议。CIE EXP和CIE CALC之间的相关系数(R)位于0.931至0.955之间。AM1,PM3和PM6可有效测量CIE。 回归分析在非线性方程中包含吸附能时使用的量子参数较少。 e广告可以减少描述符数量,以创建易于使用和短暂的模型。AM1,PM3和PM6可有效测量CIE。回归分析在非线性方程中包含吸附能时使用的量子参数较少。e广告可以减少描述符数量,以创建易于使用和短暂的模型。
摘要:只能通过考虑相互作用以塑造人性的遗传系统:生物学和文化的遗传系统才能理解。虽然发展智力能力是人类进化的关键因素,但它们与文化的进步很少形成对比。从过去的700万年开始的193种本蛋白化石的颅能数据以及考古记录中数量和复杂性增加的伪像,以证明大约200万年前的大脑规模增加和文化发展的一致性。我们的生物文化进化表明,沿着适用于两个域的时轴沿着许多量子飞跃。首先,人类离开了规范的进化途径,该途径与所有其他生物有关,通过使用复杂的工具增强其效果并进行了限制;其次,它们变成了象征性物种。最后,人类现在面临着一个新的挑战:“故意进化”。按时间顺序,这些量子飞跃对应于这里用作认知性能的颅能数据。这种贡献试图证明这种并行的发展,并为人类生物文化进化的简单而普遍的模型提出了主张。将模型推断到未来,表明人类作为生物实体,不一定会持续存在。
纵观历史,智人一直利用技术来更好地满足自身需求。需求与技术之间的关系如此根本,以至于美国国家研究委员会将技术的显着特征定义为其目标“改变世界以满足人类需求” [1]。人工智能 (AI) 是我们这个时代最有前途的新兴技术之一。与其他技术类似,AI 也有望“满足 [人类] 需求”。在本文中,我们反思需求与 AI 的关系,并呼吁实现需求感知的 AI 系统。我们认为,重新思考对 AI 的需求、通过 AI 的需求和通过 AI 的需求,可以成为开发可持续的以人为本、负责任、守法和合乎道德 (HALE) 的 AI 系统的现实方法的非常有用的手段。我们讨论了共同创建未来基于 AI 的社会技术系统的一些最关键的差距、障碍、推动因素和驱动因素,在这些系统中 [人类] 的需求得到充分考虑和满足。最后,我们概述了应仔细考虑的潜在威胁和 HALE 注意事项,并呼吁联合、立即和跨学科的努力和合作。
本研究设计并合成了六种新型聚马来酰亚胺,它们由三个重要部分组成,即马来酰亚胺环、席夫碱和柠康酸。新型聚合物的合成分为多个步骤,第一步,通过 4-氨基苯乙酮与马来酸酐反应制备 N-(4-乙酰苯基)马来酰胺酸。第二步,N-(4-乙酰苯基)马来酰胺酸脱水得到 N-(4-乙酰苯基)马来酰亚胺,第三步,N-(4-乙酰苯基)马来酰亚胺与联苯胺发生缩合反应,生成 4-(N-马来酰亚胺基甲基苄亚甲基)-4'-氨基-1,1'联苯,该化合物与柠康酸酐反应得到 4-(N-马来酰亚胺基甲基苄亚甲基)-4'-(N-柠康酸)-1,1'-联苯。最后一种化合物是本研究的关键化合物和新的重要单体,它含有两个乙烯基键,可通过自由基均聚和共聚反应轻松引入,生成新的均聚物和共聚物。除共聚反应外,本体席夫碱和柠康酸组分的存在使新聚合物具有良好的可熔性和溶解性,从而更易于加工和广泛应用。关键词共聚反应、聚酰亚胺、链间力、柠康酸。1. 简介
摘要:本研究设计并合成了一些新的抗菌化合物,它们是通过苯基桥连接到苯并咪唑环的 2 位上的 2-氨基噻二唑衍生物。通过 1 H 和 13 C NMR 光谱、高分辨率质谱和元素分析鉴定了化合物的结构。测试了合成化合物对白色念珠菌、克柔念珠菌、光滑念珠菌和近平滑念珠菌的抗真菌活性。化合物 5f 对白色念珠菌和光滑念珠菌的活性比标准氟康唑和伐康唑更高。还评估了化合物对革兰氏阳性菌大肠杆菌、粘质沙雷氏菌、肺炎克雷伯氏菌、铜绿假单胞菌以及革兰氏阴性菌粪肠球菌、枯草芽孢杆菌和金黄色葡萄球菌的拮抗活性。化合物 5c 和 5h 对粪肠球菌的最低抑菌浓度接近标准阿奇霉素。对念珠菌的 14-α 脱甲基酶进行了分子对接研究。5f 是对念珠菌活性最强的化合物,其对接相互作用能最高。采用 100 ns 分子动力学模拟测试了化合物 5c 和 5f 与 CYP51 的稳定性。根据理论 ADME 计算,化合物的曲线在限制规则方面是合适的。 HOMO−LUMO分析表明,5h的化学反应性比其他分子更强(用较低的ΔE=3.432eV表示),这与最高的抗菌活性结果相符。