生态过渡是我们日常生活的中心,现在能源生产问题及其存储问题现在是许多研究项目的重点。随着我们日常生活设备的电气越来越大,尤其是随着电动汽车的兴起,电池的寿命终止,尤其是锂离子电池(LIBS)的问题成为了真正的挑战。的确,这种类型的电池的建筑要素,例如铜,铝,尤其是钴或镍不仅昂贵,而且在非常本地化的区域和地球上的数量有限。因此,必须实施这些电池收回这些金属并满足市场需求不断增长的回收过程。回收技术(例如pyro-和hydmetallurgy)已被用来收回经济利益的要素。但是,这些破坏性过程有局限性:i)恢复的元素的纯度不足以重用它们制造新电池,ii)ii)它们需要高能输入或大量使用酸。另一方面,直接回收策略旨在将电池的不同部分分开并独立回收,因此成为实现此目标的最可信的替代方法。
废旧锂离子电池 (LIB) 因其在各种能源相关应用中的广泛使用而变得越来越普遍。这些电池含有钴 (Co) 和锂 (Li) 等有价值的金属,这些金属需求量很大,但长期供应有限。为了回收这些有价值的金属并避免环境污染,人们广泛探索了使用不同方法回收废旧 LIB,包括湿法冶金、火法冶金、直接回收和生物湿法冶金 (生物浸出)。每种方法在成本效益和从废旧 LIB 中回收钴和锂方面都有优点和缺点。因此,为了开发出新颖实用的有效金属提取策略,有必要对最近关于从废旧 LIB 中提取钴和锂的不同回收方法的性能研究进行全面而批判性的分析。具体而言,本综述重点介绍了现有回收方法和新兴回收技术在可持续性、效率、成本效益和环境友好性方面在从废旧 LIB 中回收钴和锂方面的应用的最新进展。本评论还指出,LIB 设计的标准化、SLIB 拆卸的自动化以及回收过程中人工智能/机器学习的参与是从 SLIB 中可持续回收有价值金属和最大限度地减少 SLIB 污染的一些最佳实践。
锂离子电池(LIBS)在我们的现代世界中已经变得无处不在,自1991年通过Sony Inc.发现以来,从智能手机到电动汽车,更多的一切都提供了更多的动力。市场对Libs的需求迅速增加,原材料价格的不可预测的上升为将来的大规模生产带来了不可避免的障碍。根据报道,在过去的十年中,Lith IUM价格几乎增加了两倍。未来的制造汇总可能会遇到挑战,这也是由于基本要素的全球稀缺(Li,Co和Ni)[1-4]。尽管这些电池提供了令人印象深刻的能量密度,低自减电率,轻巧和效率,但它们的广泛使用引起了人们对环境心理影响和资源耗竭的担忧[5,6]。在这次迷你审查中,我们探讨了回收锂电池以减轻问题和促进可持续未来的重要性。Hydorementallurgy和Py Rometallurgy是用于回收花费的两种主要方法。我们在更多的尾巴中介绍了提到的回收用过的锂电池的方法之一。
由于未来需要管理的废旧电池数量巨大,回收锂离子电池 (LIB) 正成为一项当务之急。目前,将废旧 LIB 转化为再生产品的三种主要回收途径是火法冶金、湿法冶金或直接回收,而共沉淀法介于后两种途径之间:其关键单元操作是电池材料的浸出和阴极活性材料 (CAM) 再合成前体的共沉淀。由于浸出溶液对杂质的高度敏感性以及高质量 CAM 前体与溶解金属盐成分之间的紧密联系,对废旧 LIB 进行实验分析是找到最佳操作条件的关键步骤。为此,我们提出了一项实验活动来研究该过程中涉及的共沉淀和复杂化合物的形成。此外,我们还利用了严格模型在许多工业领域提供的支持,这也使化学工程和实验室分析受益。因此,在本研究中,我们还在 UniSim Design ® 上提出了一个严格的模拟模型,该模型带有热力学包 OLI ®,可以考虑所需的大多数不同的液固平衡。使用实验数据对模型进行验证,并对金属浓度、pH 值和螯合剂进行敏感性分析,以找到调节共沉淀结果的关键参数。目的是优化操作条件的选择,以限制通常昂贵且耗时的实验室测试和复杂分析的次数。
本评论文章全面探讨了化学工程领域中电透析技术的重大进步,并提出了整体概述,涵盖了基本原理,膜材料和制造技术,操作参数以及广泛的应用。与以前的研究经常将重点缩小到ED的特定方面不同,这项工作综合了全球进步,弥合了各种研究主题之间的差距,以提供对当前趋势和未来方向的一致理解。是由电势驱动的一种基于膜的分离过程,对于其在水纯化,淡化,资源回收等方面的应用至关重要。本评论深入研究了离子交换膜的演变,突出了材料的创新,以及提高膜选择性和效率的制造技术的进步。它还仔细检查了操作参数对ED系统性能的影响,解决了离子泄漏,膜结垢以及选择性和电导率之间的平衡等挑战。讨论了过程强化和系统优化策略,揭示了最近的发展如何促进能源效率,可伸缩性和可持续性。审查进一步扩展到从环境管理到能源和水透明产业的领域的ED的新兴应用,并由证明实际实施的案例研究强调。通过这种全球视角,它旨在促进ED在应对一些最紧迫的挑战时的进一步探索和应用。最终,本文强调了ED技术的发展所需的多学科方法,这提出了未来研究的途径,以优先考虑环境影响,经济可行性和技术创新。
电池技术最近已成为全球研究的重点。锂铁磷酸锂(LFP)电池是一种较新的可充电电池类型,由正和负电极材料组成(或等等。2020)。正电极由LFP制成,而负电极主要由铜和石墨制成(Raccichini等人。2019)。锂铁(Li-Fe)电池由于其高能量密度,耐用性,安全性和友善性而在储能扇区中脱颖而出(Wang,2021)。他们还对高温提供了极好的抵抗力,可确保在极端条件下可靠的性能(Li等人2018; Du等。2022)。由电动汽车市场繁荣驱动的Li-Fe电池需求激增预计到2030年将与全球电动汽车销售达到2150万,年增长率为24%(International Energy Agency&Birol 2013)。这种增长有望在2030年到2030年产生500万吨Li-Fe电池浪费,这突显了有效的回收方法的紧迫性,以防止环境损失和资源损失(Beaudet等人。2020)。如果Li-Fe电池没有正确回收,电池浪费中的重金属可能会污染土壤和地下水,对环境和生态系统构成严重威胁(Zhang等人2024)。研究确定了三种主要的回收方法:高温法,水透明和直接
商业应用中对钠离子电池(SIB)的需求不断上升,这强调了满足商业标准的重要性。尽管具有潜力,但由于钠离子的独特特征,SIB遇到了与特定能量,骑自行车寿命和特定功率有关的挑战。设计了对阴极材料的设计策略,表面工程和结构修饰,以改善SIBS的电化学性能。在SIBS中,能量密度主要取决于阴极材料的选择。 如今,常见的阴极材料包括过渡金属氧化物,聚苯二极管化合物和普鲁士蓝色类似物(PBA)。 通过有针对性的修改来加强这些材料以克服其局限性对于将它们从实验室规模转变为实际使用至关重要。 但是,在有效利用阴极材料用于SIBS中的大规模储能之前,仍然存在一些挑战。 回收用过的SIBS构成了重大的经济和环境挑战,尤其是与锂离子电池(LIBS)相比。 尽管阴极材料取得了进展,但缺乏SIB的详尽的环境评估和详细的库存数据。 其发展的早期阶段限制了SIBS中的金属回收利用,强调了寿命终止治疗的重要性。 增生铝和水透明术通常用于金属恢复,由于钠蒸发风险降低,因此对SIBS的增压效能偏爱。 SIBS的营销和商业化趋势反映了对可再生能源的需求不断增长。在SIBS中,能量密度主要取决于阴极材料的选择。常见的阴极材料包括过渡金属氧化物,聚苯二极管化合物和普鲁士蓝色类似物(PBA)。通过有针对性的修改来加强这些材料以克服其局限性对于将它们从实验室规模转变为实际使用至关重要。但是,在有效利用阴极材料用于SIBS中的大规模储能之前,仍然存在一些挑战。回收用过的SIBS构成了重大的经济和环境挑战,尤其是与锂离子电池(LIBS)相比。尽管阴极材料取得了进展,但缺乏SIB的详尽的环境评估和详细的库存数据。其发展的早期阶段限制了SIBS中的金属回收利用,强调了寿命终止治疗的重要性。增生铝和水透明术通常用于金属恢复,由于钠蒸发风险降低,因此对SIBS的增压效能偏爱。SIBS的营销和商业化趋势反映了对可再生能源的需求不断增长。SIBS具有潜在的网格尺度储能,预计将支持可再生能源基础设施的扩展。但是,克服技术挑战和降低成本是SIB商业化的关键。在这方面,初创企业在为大规模存储应用程序推进SIB技术方面发挥了重要作用。公司之间的合作与制造设施的进步正在推动SIB生产,这标志着商业化的实质进展。本文旨在对当前的SIB技术研究和进步进行全面审查。
前言 毫无疑问,电动汽车 (EV) 是应对交通运输行业气候变化影响的关键,正在迅速普及和普及。由于关键电池矿物供应有限和其他挑战,最大限度地利用电动汽车电池和确保电池矿物的回收至关重要。因此,从供应链和环境足迹的角度来看,这些电池的正确生命周期管理(再利用和回收)必须成为电动汽车生态系统的一部分。 本报告分为两部分。第一部分概述了电动汽车电池的再利用和回收技术,以及实现循环经济的机遇和障碍。第二部分调查了包括美国在内的全球各国政府和业界为促进和规范电池整个生命周期的负责任管理而采取的举措。电池用于储能系统的二次使用延长了这些资源的初始寿命,并在经济的材料回收设施到位之前提供了缓冲。尽管材料回收和再利用的途径多种多样,但新的回收技术正朝着商业上可用的湿法冶金和有前景的直接回收方向发展,分析表明,直接回收的总体碳足迹最低。将这些工厂战略性地设在电池收集点附近,可以进一步减少运输成本,从而降低回收和再利用成本。适当的生命周期管理可以减轻未来电动汽车锂离子电池材料供应链的压力。世界各国政府和其他利益相关者已经开始采取行动,并提出法规,以应对与电动汽车锂电池生命周期管理相关的挑战。最后,随着制造商越来越有可能面临如此广泛的监管要求,应关注可以降低生命周期管理成本的新设计、销售和服务模式。
1. 档案数据。2. 技术说明 THM61141。SPI®NEVO、SPI®ELEMENT 和 SPI®CONTACT 种植体 PF 3.5-6.0 的手术程序 3. Cha JY 等人 J Dent Res。2015;94:482-90;4. Aldahlawi S 等人 Clin Cosmet Investig Dent。2018;10:203-9;5. Ikar M 等人 Quintessence Int。2020;51:142-150;6. Duyck J 等人 Clin Oral Implants Res。2015;26:191-6;7. Berglundh T 等人 Clin Oral Implants Res。2003;14:251-62; 8. Mohammadi Z, Dummer PM。Int Endod J。2011;44:697-730。;9. Madigan MM 等人。Brock Biology of Microorganisms。第 16 版:Pearson;2020;10. Tilbury 等人。Hydrometallurgy 2017;170:82-9;11. Tan J 等人。ACS Appl Mater Interfaces。2018;10:42018-29;12. Galow AM 等人。Biochem Biophys Rep。2017;10:17-25;13. Kruse CR 等人。Wound Repair Regen。2017;25:260-69;14. Wang S 等人。Bioact Mater。2021;15:316-29; 15. Burkhardt MA 等人。科学报告2016;6:21071; 16. Burkhardt MA 等人。生物材料科学。 2017;5:2009-23; 17. Hicklin SP 等人,Int J Oral Maxillofac Implants。 2020; 35:1013-20; 18. Le Gac O、Grunder U、Dent.J。 2015;3:15–23; 19. Makowiecki A 等人,BMC 口腔健康。 2019;19:79; 20. Lin G 等人,《临床牙周病杂志》。 2018;45:733–43; 21. Camarda AJ 等人,临床口腔种植研究。 2021;32:285-296; 22. Hermann JS 等人,临床口腔种植研究。 2001;12:559-71; 23. 杰普森 S 等人。 J 临床牙周病杂志。 2015;42:S152-7; 24. Derks J 等人,J Dent Res。 2015;94:44s-51s; 25. Merli M 等人,《临床牙周病杂志》。 2020;47:621–9; 26. Jaquiéry C 等人,Dent。 J.2014; 2:106-17; 27. Hinkle RM 等人,J Oral Maxillofac Surg。 2014年; 72:1495–502; 28. Pedro Molinero-Mourelle 等人,Clin Implant Dent Relat Res. 2024;在线版先行出版;29. Lee JH 等人,Clin Oral Implants Res. 2014;25:e83-9;30. Flanagan D 等人,J Oral Implantol. 2015;41:37-44;31. Sasada Y、Cochran DL,Int J Oral Maxillofac Implants. 2017;32:1296-307;32. Shin HM 等人,J Adv Prosthodont. 2014;6:126-32;33. Yu H、Qiu L,Int. J. Oral Maxillo-fac. Surg. 2022;51:1355-61; 34. Karasan D 等人。临床口腔种植学研究。2023 年;先在线后印刷。
本报告旨在详细描述欧洲锂离子电池(LIBS)回收的领域,包括(结合)回收技术的建议。在过去的几十年中,已经探索了(关键)原材料的不同技术,其中一些已经达到了高TRL(即工业规模)。这些可以分为物理和化学分离技术。第一个依赖于物理特性的差异,例如导电性能,磁性特性,密度等。虽然化学分离技术依赖于化学性质的差异,例如酸碱特性,氧化还原特性等。预处理过程是根据物理特性差异分开材料的技术。在应用此类步骤之前,可以放电和/或拆除LIB。通常在化学分离之前采用治疗技术。从LIB中检索黑色质量的预处理是电池回收过程的关键步骤。由于电池的非标准化组成,预处理步骤不是标准化的过程,并且会根据电池类型和化学以及所选下游回收过程而变化。预处理过程的一般流动方案是相同的,但是,每个步骤的应用方法和技术将根据应用程序的公司而有所不同。此外,其对饲料材料的简单性和灵活性是其与其他技术相对于其他技术的主要优点之一。尽管预处理过程已由不同的公司优化,但仍然需要优化黑色质量的恢复,因为黑色质量的损失仍然很大,这主要是由于黑色质量粘附在电池箔上。在化学分离技术中,PyromeTallurgy在工业规模上是一种成熟而主要的技术,并且已经用于各种废物流数十年了。然而,将锂和锰等轻质材料保留在炉渣中,需要进一步的分离步骤以隔离金属金属。直接回收阴极活动材料可能是生产新电池的有前途的方法,而无需将黑色质量减少到其元素组成。但是,直接回收仅适用于具有固定/标准化学物质的电池,例如磷酸锂(LFP)。最终产品的质量在很大程度上取决于预处理过程,因为必须确保对过程的阴极有效材料的所需纯度。水透明是另一种分离技术。在这种情况下,元素的分离是在水性介质中进行的。设计水均铝回收方法时,请考虑不同的化学特性,例如酸碱/氧化还原特性,金属与选择性配位配体的亲和力等。这项技术可以提高恢复效率和选择性的高度。此外,每个分离步骤可能会产生需要进一步治疗的废物流。但是,它通常依赖于使用不同化学试剂的使用,有时在一个以上的周期中重复使用它们是一个挑战。在本报告中,详细分析了来自四家不同公司的五个专利的水透明过程。这五个过程是由Li-Cycle,Northvolt,Duesenfeld和Brunp开发的。选择了前三个过程,因为这些过程将在欧洲实施,而BRUNP也被选为中国回收市场。