抽象锂硫(LI-S)电池是最有希望的下一代高能密度二级电池之一。然而,在循环过程中,诸如航天飞机效应,缓慢的反应动力学和锂树突生长等问题所阻碍了它们的实际应用。本报告着重于高能密度LI-S电池所需的关键材料和设备设计。它通过检查催化剂表面的电子结构来提出了阴极催化剂的合理设计。具体而言,它引入了过渡金属催化剂的D轨道和锂多硫化物的P-轨道之间的杂交概念,这些锂多硫化物可以用作筛选Li-Scowers单原子催化剂的描述符。机器学习被用来开发一个可以有效筛选过渡金属化合物催化剂的二进制描述符,从而阐明了LI-S催化中的电子和结构效应。提出了一种普遍的策略来调整催化剂的旋转和轨道拓扑。该报告还探讨了LI-S电池催化剂中随时间推移的不同轨道杂交之间的过渡。为了解决锂树突的不受控制的生长以及相关的安全风险,在共同调节的质量和电荷运输下,Li-S阴极与阳极之间的耦合机制被揭露,从而指导电极结构的合理设计。提出了基于分层结构的人造固体电解质相(SEI)层,以稳定锂金属阳极并防止树突形成。另外,通过调整电解质的溶剂化结构,可以实现SEI层的分子级控制,从而导致锂金属阳极的稳定循环。建立在这个基础上,已经制定了制备高硫载电极的系统策略。该报告研究了LI-S完整细胞的构建,分析了关键技术和过程参数如何影响Li-S袋细胞的电荷分离和循环性能。优化这些参数后,小袋单元的能量密度超过400 WHkg⁻。
摘要 有机-无机杂化钙钛矿已迅速发展成为太阳能电池和 LED 的多功能半导体,其特性可通过成分和晶体结构修改进行调节。本次演讲将概述我们使用具有定制功能组的小分子控制钙钛矿尺寸和纳米结构的策略,从而开发出高度稳定和高效的准二维钙钛矿太阳能电池。我们还利用有机太阳能电池的界面工程技术来增强钙钛矿太阳能电池和有机/钙钛矿串联太阳能电池中的电荷收集和缺陷钝化。除了太阳能电池之外,我们的研究重点是用于照明、显示技术和可见光通信 (VLC) 的钙钛矿发光二极管 (PeLED)。对于绿色 PeLED,我们采用界面化学辅助原位生长具有超低陷阱密度的高质量钙钛矿薄膜,显着提高亮度、工作寿命和效率。在蓝色和白色 PeLED 中,我们使用自组装单层 (SAM) 来提高稳定性、效率和色纯度,并采用下转换方法获得高品质白光。这些进步凸显了钙钛矿材料在各种光电应用中的潜力,包括 VLC 和可能性激光。
传记教授丹芬·李(Danfeng Li)是物理系的相关教授,目前是香港城市大学科学学院研究与研究生教育副院长(Cityuhk)。Li教授获得了几项享有声望的奖项和认可,包括2023年的AAPPS-APCTP Chen-ning Yang奖,氧化物电子电子卓越研究奖,2024年,麻省理工学院技术评论35 Innovators 35 Innovators在2021年35岁以下的创新者(中国),以及Stanford的Stanford列表,以及Stanford的20223年和2023年的20224年。Li教授获得了他的B.Eng。 in jiang University和M.Phil。 来自香港理工大学(顾问:Ji-Yan Dai教授)。 获得博士学位后不久(2016年)在日内瓦大学量子物理学系(顾问:Jean-Marc Triscone教授),他与斯坦福大学一起担任瑞士国家科学基金会博士后研究员,与Harold Hwang教授一起工作。 他于2020年11月加入Cityuhk担任助理教授。Li教授获得了他的B.Eng。in jiang University和M.Phil。来自香港理工大学(顾问:Ji-Yan Dai教授)。 获得博士学位后不久(2016年)在日内瓦大学量子物理学系(顾问:Jean-Marc Triscone教授),他与斯坦福大学一起担任瑞士国家科学基金会博士后研究员,与Harold Hwang教授一起工作。 他于2020年11月加入Cityuhk担任助理教授。来自香港理工大学(顾问:Ji-Yan Dai教授)。获得博士学位后不久(2016年)在日内瓦大学量子物理学系(顾问:Jean-Marc Triscone教授),他与斯坦福大学一起担任瑞士国家科学基金会博士后研究员,与Harold Hwang教授一起工作。他于2020年11月加入Cityuhk担任助理教授。
传记G.-M。教授Rignanese是Ecole Polytechnique de Louvain(EPL)的教授和F.R.S.-FNRS的研究主任。他于1994年获得了Catholique de Louvain大学的工程学位和博士学位。在1998年的Catholique de Louvain大学的应用科学中。在博士学位期间,他还曾在PATP(并行应用技术项目),Cray Research与Ecole PolytechniquefédéraledeLausanne(EPFL)的合作中担任软件开发顾问。他在史蒂文·路易(Steven Louie)教授小组的加利福尼亚大学伯克利分校进行了博士后研究。在2003年,他在卢万大学获得了永久职位。在2022年,他被任命为西北(中国)西北理工大学的兼职教授。在2019年,他在电子结构计算领域开发免费的许可软件的原始努力以及在广泛的材料类型中的高通量计算被任命为APS研究员。
摘要:由于其超高的能量转移效率,近场辐射传热显示出在各种新兴技术领域中应用的显着潜力。目前,研究近场辐射传热问题的主要理论框架包括传统的波动电动力学(FE)理论和最近提出的非平衡绿色功能(NEGF)方法。在两种方法中,物体之间的辐射热通量取决于计算物体对外部电磁场的响应函数。本报告介绍了基于密度功能理论的第一原理方法,在不同温度下对物体之间计算近场辐射热通量的方法。它提供了计算公式,其中包括FE和NEGF方法的局部现场效应。使用二维材料(例如石墨烯)作为示例,我们介绍了近场辐射热通量与物体之间的距离以及辐射能谱之间的关系。然后,我们系统地比较了第一原理方法和传统理论模型对诸如石墨烯极化之类的响应函数的影响。最后,我将在完全非平衡条件下的光子电子相互作用引起的统一的能量,动量和角动量转移理论引入开拓性工作。
正在为新的和可再生能源进行抽象的广泛研究。氢正在受到特殊关注,并且对包括天然气,煤炭,废物和生物质在内的升级能源进行研究。催化反应通常对于从这些资源中产生高价值化学物质至关重要。水– gas偏移(WGS,CO + H 2 O→CO 2 + H 2)反应是提升各种类型的合成气体的最有用的催化途径之一。当前,WGS反应的应用范围已进一步扩展到废物,生物质和煤炭衍生的合成气体的升级。但是,应通过考虑其特征来仔细定制反应条件和催化剂。在这项研究中,我们专注于WGS反应的反应条件和催化剂,这些反应在过去十年中处理了各种类型的进料气体,以了解发展的进展。基于分类(通过进料气体的类型),我们仔细比较了测试的催化剂,容量,温度,进料气体成分,蒸汽与碳比率和催化剂性能。我们可以洞悉每种类型的进料气源中面向目标WGS反应的当前研究趋势和观点,这可以为定制提供线索。
摘要 与通过强配位或共价键组装的金属有机骨架(MOF)和共价有机骨架(COF)不同,基于非共价相互作用的新型多孔有机分子材料由于其结构单元简单、超分子组装的灵活性而备受关注。非共价π-堆叠有机骨架(πOF)是多孔材料的一个子类,由有机构件通过π-π相互作用自组装形成的晶体网络组成。π-π相互作用和π-离域超分子骨架的柔性、可逆和导电特性赋予πOF有利的属性,包括溶液可加工性、自修复能力、显著的载流子迁移率和优异的稳定性。这些特性使πOF成为气体分离、分子结构测定和电催化等应用的理想选择。自2020年该概念提出以来,πOF的化学和应用都取得了重大进展。未来的研究应侧重于扩大其结构多样性和探索新的应用,特别是在传统多孔材料遇到局限性的领域。[1, 2]。
简历 Tae-Woo Lee 是韩国首尔国立大学材料科学与工程系的教授。他于 2002 年在韩国韩国科学技术院 (KAIST) 获得化学工程博士学位。他于 2002 年加入美国朗讯科技贝尔实验室担任博士后研究员,随后在三星高级技术学院担任研究人员 (2003-2008)。他曾担任韩国浦项科技大学 (POSTECH) 材料科学与工程系助理教授和副教授,直至 2016 年 8 月。他获得过许多宝贵的奖项。他是 280 篇论文的作者和合著者,论文发表在《Science》、《Nature》、《Nature Photonics》、《Nature Nanotechnology》、《Nature Biomedical Engineering》、《Science Advances》、《Nature Communications》、《Joule》、《PNAS》、《Energy and Environmental Science》和《Advanced Materials》等高影响力期刊上。他还是 423 项专利技术的发明人或共同发明人。他目前担任《Advanced Materials》(Wiley)、《FlatChem》(Elsevier)、《EcoMat》(Wiley)、《Chem & Bio Engineering》(ACS)、《Materials Today Electronics》(Elsevier)、《Nano Convergence》(Springer)和《Semiconductor Science and Technology》(IOP)等期刊的编委会成员,以及《Organic Electronics》(Elsevier)的副主编。他的研究重点是有机、有机-无机杂化钙钛矿和碳材料,以及它们在柔性电子、印刷电子、显示器、固态照明、太阳能转换设备和仿生神经形态设备中的应用。