抽象锂硫(LI-S)电池是最有希望的下一代高能密度二级电池之一。然而,在循环过程中,诸如航天飞机效应,缓慢的反应动力学和锂树突生长等问题所阻碍了它们的实际应用。本报告着重于高能密度LI-S电池所需的关键材料和设备设计。它通过检查催化剂表面的电子结构来提出了阴极催化剂的合理设计。具体而言,它引入了过渡金属催化剂的D轨道和锂多硫化物的P-轨道之间的杂交概念,这些锂多硫化物可以用作筛选Li-Scowers单原子催化剂的描述符。机器学习被用来开发一个可以有效筛选过渡金属化合物催化剂的二进制描述符,从而阐明了LI-S催化中的电子和结构效应。提出了一种普遍的策略来调整催化剂的旋转和轨道拓扑。该报告还探讨了LI-S电池催化剂中随时间推移的不同轨道杂交之间的过渡。为了解决锂树突的不受控制的生长以及相关的安全风险,在共同调节的质量和电荷运输下,Li-S阴极与阳极之间的耦合机制被揭露,从而指导电极结构的合理设计。提出了基于分层结构的人造固体电解质相(SEI)层,以稳定锂金属阳极并防止树突形成。另外,通过调整电解质的溶剂化结构,可以实现SEI层的分子级控制,从而导致锂金属阳极的稳定循环。建立在这个基础上,已经制定了制备高硫载电极的系统策略。该报告研究了LI-S完整细胞的构建,分析了关键技术和过程参数如何影响Li-S袋细胞的电荷分离和循环性能。优化这些参数后,小袋单元的能量密度超过400 WHkg⁻。
主要关键词