在这项研究中,我们证明了在电解图(EEG)回归任务上预处理的混合视觉变压器(VIT)模型的应用。最初接受了图像分类任务的训练,但在脑电图数据进行微调时,与其他模型相比,该模型的性能明显增加,包括相同的体系结构VIT训练而没有Imagenet权重。这一发现挑战了模型概括的传统范围,这表明在看似无关的图像数据上预测的变压器模型可以通过适当的精细调整管道为EEG回归任务提供宝贵的先验。这种方法的成功表明,在视觉任务中,VIT模型提取的功能可以很容易地用于EEG预测建模。我们建议不仅在神经科学和相关领域中利用这种方法,而且通常用于数据收集受实际,财务或道德约束限制的任何任务。我们的结果阐明了对任务明显不同的任务的潜力。
知识蒸馏(KD)旨在将知识从大型教师模型转移到较小的学生模型。虽然对比学习通过创建歧视性表示表现出了在自我监督学习中的希望,但其在知识蒸馏中的信息仍然有限,并且主要涉及歧视,忽略了教师模型捕获的结构关系。为了解决这一限制,我们提出了d Iscriminative and C On Consistent d Istillation(DCD),它采用了对比损失以及一致性正规化,以最大程度地减少教师和学生代表分布之间的差异。我们的方法引入了在训练过程中适应这些互补目标的可学习温度和偏置参数,以取代对比度学习方法中常用的固定超平衡器。通过CIFAR-100和Imagenet ILSVRC-2012的广泛实验,我们证明DCD实现了状态的表现,学生模型有时会超过教师的准确性。此外,我们表明DCD的所学表示形式将转移到小型成像网和STL-10 1时表现出较高的跨数据集泛化。
过去十年来计算神经科学中最有影响力的发现之一是,深神经网络(DNN)的对象识别准确性(DNNS)与他们预测依次(IT)皮质中自然图像的神经反应的能力相关[1,2]。这一发现支持了长期以来的理论,即对象识别是视觉皮层的核心目标,并建议更准确的DNN将作为IT神经元对图像的更好模型的响应[3-5]。从那时起,深度学习就进行了一场规模的革命:经过数十亿图像训练的十亿个参数规模的DNN在包括对象识别的视觉任务上竞争或超越人类。今天的DNN在对象识别方面变得更加准确,可以预测其对图像的神经元的响应变得更加准确?在三个独立的实验中,我们发现情况并非如此:DNN逐渐变得更糟,因为其精度在Imagenet上提高了。要了解为什么DNN经历这种权衡并评估它们是否仍然是建模视觉系统的适当范式,我们转向其录音,以捕获自然图像引起的神经元活动的空间分辨图[6]。这些神经元活动图表明,接受Imagenet训练的DNN学会依靠与由其编码的DNN相比,并且随着其准确性的提高,该问题恶化。我们成功解决了这个问题,这是DNNS的插件训练程序,它使他们学到的表现与人类保持一致[7]。我们的结果表明,统一的DNN破坏了ImageNet精度和神经预测准确性之间的权衡,从而攻击了当前的DNN,并为更准确的生物学视觉模型提供了途径。我们的工作表明,使用任务优化的DNNS需要进行修订的标准方法,以及其他生物学约束(包括人体心理物理学数据)需要准确地逆转视觉皮层。
摘要。不受限制的对抗攻击对深度学习模型和对抗性防御技术构成了严重威胁。它们为深度学习应用带来了安全问题,因为它们可以有效地绕过防御机制。然而,以前的攻击通常直接直接将投影梯度下降(PGD)梯度注入生成模型的采样中,这些模型并非理论上是可以预见的,因此通过合并对抗性目标,尤其是对于像ImageNet这样的大型数据集的基于GAN的方法,从而产生了不切实际的示例。在本文中,我们提出了一种称为Advdiff的新方法,以生成具有扩散模型的不受限制的对抗示例。我们设计了两种新型的对抗引导技术,以在扩散模型的反向生成过程中进行对抗采样。这两种技术通过解释的目标分类器的梯度来产生高质量的对抗性示例,在产生高质量的对抗性示例中是有效且稳定的。对MNIST和IMAGENET数据集的实验结果表明,Advdiff在产生无限制的对抗示例方面有效,在攻击性能和发电质量方面,其表现优于最先进的不受限制的对抗攻击方法。
人工智能的主要里程碑 1. 达特茅斯研讨会 (1956) 2. 感知器 (1957): 3. ELIZA (1965): 4. 专家系统时代 (1970 年代 - 1980 年代) 5. 深蓝与加里·卡斯帕罗夫 (1997) 6. 机器学习的诞生 (1997) 7. ImageNet 和深度学习 (2012) 8. AlphaGo (2016) 9. 生成对抗网络 (GAN) (2014) 10. Transformer 和自然语言处理 (2017)
从人脑活动中解码的视觉表示已成为繁荣的研究领域,尤其是在大脑计算机界面的背景下。我们的研究提出了一种创新的方法,该方法采用知识蒸馏来培训EEG分类器并从ImageNet和Thicke-eeg 2数据集中重建图像,仅使用脑电图(EEG)数据集(EEG)数据,这些数据是来自参与者的数据,这些数据本身就查看了图像(即''大脑解码')。我们分析了来自6位参与者的eeg录音,用于Imagenet数据集,为Things-EEG 2数据集进行了10个录音,这些数据集暴露于跨越独特语义类别的图像。这些脑电图读数被转换为频谱图,然后将其用于训练卷积神经网络(CNN),该卷积神经网络(CNN)与知识蒸馏程序集成了基于预先训练的对比语言图像 - 训练前训练(CLIP)基于基于图像的图像分类教师网络。这种策略使我们的模型可以达到87%的前5个精度,显着优于标准CNN和各种基于RNN的基准测试。此外,我们根据预训练的潜扩散模型合并了图像重建机制,这使我们能够生成引起脑电图活性的图像的估计。因此,我们的体系结构不仅解码了神经活动中的图像,而且还提供了仅从脑电图中重建的可信图像重建,为例如迅速,个性化的反馈实验铺平了道路。
背景:皮肤癌诊断对皮肤科医生来说是一个挑战,因为其在诊断类别之间具有复杂的视觉差异。卷积神经网络 (CNN),特别是 Efficient Net B0-B7 系列,在多类皮肤癌分类中表现出了优越性。本研究通过展示专为 Efficient Net 模型设计的定制预处理流程来解决视觉检查的局限性。该研究利用具有预训练 ImageNet 权重的迁移学习,旨在提高不平衡多类分类环境中的诊断准确性。方法:本研究开发了一种专门的图像预处理流程,包括图像缩放、数据集增强和伪影去除,以适应 Efficient Net 模型的细微差别。使用 Efficient Net B0-B7 数据集,迁移学习对具有预训练 ImageNet 权重的 CNN 进行微调。严格的评估采用精确度、召回率、准确度、F1 分数和混淆矩阵等关键指标来评估迁移学习和微调对每个 Efficient Net 变体在对不同皮肤癌类别进行分类时的表现的影响。结果:该研究展示了为 Efficient Net 模型量身定制的预处理流程的有效性。迁移学习和微调显著增强了模型辨别不同皮肤癌类别的能力。对八个 Efficient Net 模型 (B0-B7) 进行皮肤癌分类的评估揭示了不同癌症类别之间的不同性能模式。虽然占多数的类别良性角化病实现了高精度 (>87%),但在准确分类湿疹类别方面存在挑战。黑色素瘤尽管只占少数 (占图像的 2.42%),但在所有模型中的平均精度为 80.51%。然而,在预测疣软疣 (90.7%) 和牛皮癣 (84.2%) 实例时,观察到的性能不佳,这凸显了需要有针对性地改进以准确识别特定皮肤癌类型。结论:皮肤癌分类研究利用 EfficientNets B0-B7 和从 ImageNet 权重进行迁移学习。 EfficientNet-B7 的性能达到了巅峰,实现了突破性的 84.4% 的 top-1 准确率和 97.1% 的 top-5 准确率。它非常高效,比领先的 CNN 小 8.4 倍。通过混淆矩阵进行的详细每类分类准确率证实了它的熟练程度,表明 EfficientNets 在精确的皮肤病学图像分析方面具有潜力。
他的论文拥有超过 18 万次引用。 他在牛津大学完成了博士学位和博士后学业,在那里设计了 VGGNet 并赢得了著名的 ImageNet 挑战赛;他的第一家公司随后被 DeepMind 收购。作为 DeepMind 的首席科学家, Karen 建立并领导了大规 模深度学习团队,开发现实世界数据的大型 AI 模型。 Reid Hoffman 也是 Inflection AI 的联合创始人,他曾经是 LinkedIn 的联合创始人和 Greylock 的合伙人。在加入
– 特征不变性很难:施加扰动,针对每个变化进行学习 – ImageNet 最佳表现者的进展 – AlexNet:第一个表现最好的 CNN,60M 参数(来自 LeNet-5 的 60k),ReLU – VGGNet:更简单但更深(8 19 层),140M 参数,集成 – GoogleNet:新原始 = inception 模块,5M 参数,无 FC,效率 – ResNet:152 层,消失梯度 拟合残差以实现学习 5. 无数应用程序:通用架构,巨大功能
● 1943 年 - Pitts 和 McCulloch 创建了基于人脑神经网络的计算机模型 ● 20 世纪 60 年代 - 反向传播模型基础 ● 20 世纪 70 年代 - AI 寒冬:无法兑现的承诺 ● 20 世纪 80 年代 - 卷积出现,LeNet 实现数字识别 ● 1988-90 年代 - 第二次 AI 寒冬:AI 的“直接”潜力被夸大。AI = 伪科学地位 ● 2000-2010 年 - 大数据引入,第一个大数据集 (ImageNet) ● 2010-2020 年 - 计算能力,GAN 出现 ● 现在 - 深度学习热潮。AI 无处不在,影响着新商业模式的创建