产品信息材料编号:562958替代名称:SPN;唾液磷脂; leukosialin; LY-48; ly48; galgp; LEUK大小:50 µg浓度:0.2 mg/ml克隆:S7免疫原:小鼠浆细胞瘤MOPC-315同种型:大鼠(DA X Lou)IgG2A,κQC测试:鼠标反应性:存储缓冲液:含有BSA和≤0.099%sodiuiuiuiuiuiuiuiuiuiuium a Zide a Zide sodiuiuiuium a Zide soperitive:Storage Reactivity:Storage Buffer:描述S7单克隆抗体特异性结合了CD43的115 kDa糖基化形式(LY-48,leukosialin)。CD43 is expressed on IL-7-responsive pro-B cells, plasma cells, peritoneal and splenic CD5+ B cells (B-1 cells), granulocytes, monocytes, macrophages, platelets, natural killer cells, thymocytes, peripheral T cytotoxic/suppressor cells, and most T helper cells, but not resting conventional peripheral B cells.CD43表达也已在骨髓中多能造血干细胞和髓样,淋巴样和NK细胞祖细胞上检测到。CD43缺陷小鼠的研究表明,CD43参与T细胞激活和粘附的负调控。
是肝病学实验室,胃肠病学系,医学科学学院,科学研究所和医学研究所,医学院,医学院,德国临床大学,智利,智利和医院帕德雷·帕德雷·霍尔达多医院,圣地亚哥,智利科学学院,科学学院疾病和西班牙塞维尔塞维尔
摘要:在这项研究中,开发了高度敏感的单克隆抗体(MAB),用于玉米和饲料中黄曲霉毒素B 1(AFB 1)的分解。还建立了间接竞争性酶联免疫吸附测定(IC-ELISA)和时间分辨荧光免疫测定法(TRFICA)。首先,合成了HAPEN AFB 1 -CMO,并与载体蛋白共轭,以制备用于小鼠免疫的免疫原。随后,使用Classical杂交瘤技术产生mAb。IC-ELISA的最低半最大抑制浓度(IC50)为38.6 ng/kg,线性范围为6.25–100 ng/kg。玉米和饲料中检测的极限分别为6.58 ng/kg和5.54 ng/kg,回收率范围从72%到94%。从样本处理到阅读,开发了TRFICA的检测时间仅大幅减少21分钟。此外,玉米和饲料的检测限度分别为62.7 ng/kg和121 ng/kg。线性范围为100–4000 ng/kg,回收率范围从90%到98%。总而言之,AFB 1 MAB的开发和用于高通量样品检测的IC-ELISA以及用于快速检测的TRFICA的IC-ELISA提出了可用于多功能AFB 1在不同情况下检测的强大工具。
1 埃默里大学耶基斯国家灵长类动物研究中心,美国佐治亚州亚特兰大,2 斯克里普斯研究所斯克里普斯艾滋病毒/艾滋病疫苗免疫原开发中心 (CHAVD),美国加利福尼亚州拉霍亚,3 埃默里大学医学院埃默里疫苗中心,美国佐治亚州亚特兰大,4 拉霍亚免疫学研究所 (LJI) 传染病和疫苗研究中心,美国加利福尼亚州拉霍亚,5 埃默里大学医学院微生物学和免疫学系,美国佐治亚州亚特兰大,6 华盛顿大学医学院病理学和免疫学系,美国密苏里州圣路易斯,7 斯克里普斯研究所免疫学和微生物学系,美国加利福尼亚州拉霍亚,8 斯克里普斯研究所综合结构和计算生物学系,美国加利福尼亚州拉霍亚,9麻省理工学院和哈佛大学拉根麻省总医院研究所,美国马萨诸塞州剑桥市,10 加利福尼亚大学圣地亚哥分校医学系传染病和全球公共卫生分部,美国加利福尼亚州拉霍亚市,11 宾夕法尼亚大学佩雷尔曼医学院微生物学系,美国宾夕法尼亚州费城
产品名称 DNA Pol μ 兔多克隆抗体 宿主物种 兔 应用 WB;ELISA 物种交叉反应 人;大鼠;小鼠; 建议稀释度 Western Blot:1/500 - 1/2000。ELISA:1/40000。尚未在其他应用中测试。 免疫原 来自 DNA Pol μ 的合成肽。AA 范围:210-290 特异性 DNA Pol μ 多克隆抗体检测内源水平的 DNA Pol μ 蛋白。 制剂 含有 50% 甘油、0.5% BSA 和 0.02% 叠氮化钠的 PBS 液体。 储藏 储存于 -20°C。避免反复冻融循环。 蛋白质名称 DNA 指导的 DNA/RNA 聚合酶 mu 基因名称 POLM 细胞定位 细胞核。 纯化 使用表位特异性免疫原,通过亲和层析法从兔抗血清中亲和纯化抗体。克隆性 多克隆 浓度 1 mg/ml 观察到的条带 54kD 人类基因 ID 27434 人类 Swiss-Prot 编号 Q9NP87 别名 POLM;polmu;DNA 引导的 DNA/RNA 聚合酶 mu;Pol Mu;末端转移酶 背景催化活性:脱氧核苷三磷酸 + DNA(n) = 二磷酸 + DNA(n+1)。,辅因子:镁。,功能:似乎充当 Ig 变位酶,负责免疫球蛋白 (Ig) 基因超突变。,相似性:属于 DNA 聚合酶 X 型家族。,相似性:包含 1 个 BRCT
产品的窗口,如多项研究所示。2 - 12中的ADCELD,现场特定类型的所有类型的技术,如今已统治了进入临床试验的新ADC。然而,比较产生相同代谢物的同质和杂质ADC的免疫原的最新工作表明,特定部位的技术可能并不总是会增强该药物的小脂肪动物,并且也可能有害地改变其毒性。13 - 15实际上,几个标准,例如有效载荷的性质,链接器,结合化学,药物抗体比(DAR),ADC的疏水性可能会影响结合物的体内特性,这是在很快被预测的。即将进行的现场特定准备的ADC的大量临床研究可能有助于阐明是否存在单一的共轭化学物质会广泛使用,或者其他方法是否也适用。 因此,开发各种技术是为了进一步进步而有意义的。 由于大量暴露于溶剂的亲核氨基酸,尤其是赖氨酸,与抗体结合的位点可能具有挑战性。 尽管很困难,但通过开发多种技术,可以将其总结为工程性半胱氨酸,disul de 。即将进行的现场特定准备的ADC的大量临床研究可能有助于阐明是否存在单一的共轭化学物质会广泛使用,或者其他方法是否也适用。因此,开发各种技术是为了进一步进步而有意义的。与抗体结合的位点可能具有挑战性。尽管很困难,但通过开发多种技术,可以将其总结为工程性半胱氨酸,disul de
摘要简介:锥虫是一种原生动物,可感染多种家养和野生哺乳动物,在拉丁美洲国家分布广泛。T. rangeli 感染与查加斯病相似,无论是在诊断方面还是在预防方面。因此,本研究的目的是回顾 T. rangeli 作为克氏锥虫感染免疫原的诊断方面和用途。方法:为了进行这项研究,采用了系统评价和荟萃分析的首选报告项目 (PRISMA) 指南,描述符来自 PubMed/MEDLINE 和 SciELO 数据库中的医学主题词 (MeSH) 平台。纳入标准定义为关于“Trypanosoma rangeli”和人类 T. rangeli 感染诊断方面的原创文章和/或使用 T. rangeli 菌株开发用于克氏锥虫感染的可能疫苗的研究。结果:根据纳入和排除标准,共收集到 18 篇文章,其中 4 篇文章涉及使用 T. rangeli 为脊椎动物的 T. cruzi 感染开发的可能疫苗的研究,其余 14 篇文章主要涉及人类 T. rangeli 感染的诊断方面。结论:在本研究中,我们汇编了有关该主题的重要文献,强调需要更准确、更易于获取的技术来鉴别诊断两种原生动物引起的感染,并强调了寻找查加斯病疫苗的几种前景。关键词:Trypanosoma rangeli。克氏锥虫。疫苗。诊断。
感觉神经元感知致病性浸润,以告知宿主38防御的免疫协调。然而,感官神经元免疫相互作用主要显示为39驱动先天免疫反应。体内记忆,无论是保护性还是破坏性,在生命的早期就获得了40次获得,如早期暴露于链球菌和过敏性疾病发作所证明的那样。41我们的研究进一步定义了感觉神经元对肺部体液免疫的影响。42使用肺炎链球菌的鼠模型前暴露和感染,以及43种过敏性哮喘的模型,我们表明B细胞和血浆细胞44募集和抗体产生需要感觉神经元。对肺炎链球菌的响应,感觉神经元耗竭45导致细菌负担更大,B细胞群体减少,IgG释放和中性粒细胞46刺激。相反,在过敏原诱导的气道炎症过程中,感觉神经元耗竭降低了B细胞群体,IgE和47个哮喘特征。在每个模型中释放的感觉神经元48神经肽都不同。有细菌感染,优先释放了血管活性肠49多肽(VIP),而物质P则释放出对哮喘的反应50。将VIP施用到感官神经元缺失的小鼠中抑制了细菌51负担并增加了IgG水平,而VIP1R缺乏症增加了对细菌52感染的敏感性。用物质P处理的感官神经元缺乏的小鼠增加了IgE和哮喘,而物质P遗传消融导致IgE钝化,类似于感觉神经元缺乏的54次哮喘小鼠。58这些数据表明,免疫原差异刺激感觉55神经元释放特定的神经肽,这些神经肽是特异性靶向B细胞的。靶向感官56神经元可能会为57和/或加重的体液免疫提供的疾病提供替代治疗途径。
引言严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 是一种人畜共患病原体,属于 Betacoronavirus 家族,于 2019 年 12 月在中国武汉出现。SARS-CoV-2 迅速席卷全球,引发冠状病毒病 (COVID-19) 大流行,感染超过 2240 万人,导致至少 789,455 人死亡(约翰霍普金斯大学,2020 年 8 月 20 日访问)1。在七种导致人类呼吸道疾病的冠状病毒中,有四种仅引起轻度感染(229E、NL63、OC43 和 HKU1),三种是高致病性(SARS-CoV、MERS 和 SARS-CoV-2)。SARS-CoV-2 最有可能起源于蝙蝠,并通过中间动物宿主传播给人类,就像其他高致病性人类冠状病毒 MERS 和 SARS-CoV 2 一样。 SARS-CoV-2 高传染性和致病性的分子决定因素仍是假设的,但刺突蛋白中获得弗林蛋白酶切割位点以及受体结合域发生突变使得刺突蛋白能够与人血管紧张素转换酶 (ACE2) 结合似乎是关键/重要因素 3 – 5 。这些以及其他可能存在的分子特征使得 SARS-CoV-2 成为三种致病冠状病毒中传播性最强的。与 SARS 不同,在有效疫苗问世之前,SARS-CoV-2 可能不会被消灭甚至无法控制。已发现 ACE2 受体介导 SARS-CoV-2 以及其他冠状病毒(包括 NL63 和 SARS-CoV)进入细胞,SARS-CoV-2 与后者有 76% 的氨基酸同一性 5 。表达 ACE2 的细胞易受 SARS-CoV-2 刺突 (S) 糖蛋白的影响,该糖蛋白从 SARS-CoV-2 病毒体膜表面伸出并充当配体 2 。在人类中,中和抗体和/或 T 细胞免疫反应是针对几种 SARS-CoV-2 蛋白产生的,但主要针对 S 蛋白,这表明 S 蛋白特异性免疫反应在保护中起着重要作用 6 。因此,目前大多数疫苗方法都使用 SARS-CoV S 蛋白或其部分作为疫苗免疫原 7 。