首先,我们来看看数字信号处理。传统上,航空电子和卫星电源应用与 28v 总线(或车载 14v)相关,而后者又在需要时转换为低压配电。由于控制系统和有效载荷的数字内容增加(包括可编程阵列和传感器的模拟数字 (ADC 或 DAC) 转换),该领域正在快速增长。新设计继续采用具有更高处理速度的 ASICS,要求用于去耦的多层陶瓷芯片电容器 (MLCC) 具有较低的寄生元件,即低等效串联电阻 (ESR) 和低等效串联电感 (ESL)。越接近核心 ASIC 或可编程阵列,ESL 的控制就越关键。由于电容器是 2 端设备,因此基本 ESL 特性来自部件的几何形状 - 两个端子有效地定义了信号的电流环路,部件越大,环路越大,因此 ESL 也越大。解决这个问题的基本方法是使用“反向几何”低电感芯片电容器 (LICC),其端接在侧面而不是部件的末端。在 2:1 长宽比部件(例如 1206 尺寸)中,使用反向几何版本 0612 将在相同电容/电压设计和相同空间占用的情况下将电感降低 2 倍(通常从 1nH 到 500pH)。通过使用较小轮廓的部件和较小的环路(0508 代替 0805、0306 代替 0603 等),仍然可以实现较低的电感,但这是以降低电容值为代价的 – 并且仍然要求在 ASIC 工作频率下保持电容。因此,为了实现更快的速度,需要新的组件设计,其中电感组件可以与电容组件分开。有三种方法可以实现这一点:通过电感消除、通过非常小的信号环路以及通过最小化与 PCB 接地平面的电感耦合。电感消除的一个很好的例子是数字间电容器 (IDC)。这是一种反向
案例研究:整合北美电网 162 案例研究:电网拥塞 - 疏通北美电网动脉 167 4.1 输电线设计考虑因素 173 4.2 电阻 178 4.3 电导 181 4.4 电感:实心圆柱导体 181 4.5 电感:单相两线线路和相距相等的三相三线线路 186 4.6 电感:复合导体、不等相距、捆绑导体 188 4.7 串联阻抗:带有中性导体和接地回路的三相线路 196 4.8 电场和电压:实心圆柱导体 201 4.9 电容:单相两线线路和相距相等的三相三线线路204 4.10 电容:绞合导线、不等相间距、捆绑导线 206 4.11 分流导纳:带有中性导线和接地回路的线路 210 4.12 导线表面和地面的电场强度 215 4.13 并联电路三相线路 218
案例研究:整合北美的功率电网162案例研究:网格拥塞 - 拆卸北美功率电网的动脉167 4.1传输线设计注意事项173 4.2电阻178 4.3电导率181 4.4电感181 4.4电感:固体圆柱形导体181 4.5敏感性181 4.5型号和三个速度的三个速率3次序列3次,三个速度:3速度均衡:3平等三个速度: Conductors, Unequal Phase Spacing, Bundled Conductors 188 4.7 Series Impedances: Three-Phase Line with Neutral Conductors and Earth Return 196 4.8 Electric Field and Voltage: Solid Cylindrical Conductor 201 4.9 Capacitance: Single-Phase Two-Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing 204 4.10 Capacitance: Stranded Conductors, Unequal Phase Spacing, Bundled Conductors 206 4.11分流式入口:具有中性导体和地球返回的线210 4.12导体表面的电场强度和地面215 4.13平行电路三相线218
即使走线电气长度不长,R41-R44 也可用作阻尼电阻(27-51 欧姆),通过减少由杂散电感和电容引起的过冲和振铃来改善信号完整性。无论哪种情况,R41-R44 都应尽可能靠近驱动走线(信号源)的设备。如果电容器和麦克风之间的走线电感最小化,去耦电容器(C32-33、C34-35)最有效。这可以通过使用短而宽的走线来实现。如果在麦克风下方使用接地平面,则使用过孔将电容器接地垫直接连接到平面,而无需使用任何走线。
首先,我们来看看数字信号处理。传统上,航空电子和卫星电源应用与 28v 总线(或 14v 车载总线)相关,而后者又可在需要时转换为低压配电。由于控制系统和有效载荷的数字内容增加(包括可编程阵列和传感器的模拟数字 (ADC 或 DAC) 转换),该领域正在快速增长。新设计继续采用具有更高处理速度的 ASIC,要求用于去耦的多层陶瓷芯片电容器 (MLCC) 具有更低的寄生元件,即低等效串联电阻 (ESR) 和低等效串联电感 (ESL)。越接近核心 ASIC 或可编程阵列,ESL 的控制就越关键。由于电容器是 2 端子设备,因此基本 ESL 特性源自部件的几何形状 - 两个端子有效地定义了信号的电流环路,部件越大,环路越大,因此 ESL 也越大。解决这个问题的基本方法是使用“反向几何”低电感芯片电容器 (LICC),其端接在侧面,而不是部件的末端。在 2:1 纵横比的部件(例如 1206 尺寸)中,使用反向几何版本 0612 可将电感降低 2 倍(通常从 1nH 降低到 500pH),同时保持相同的电容/电压设计和相同的空间。通过使用更小的轮廓部件和更小的环路(0508 代替 0805、0306 代替 0603 等),仍然可以实现更低的电感,但这是以降低电容值为代价的 - 并且 ASIC 工作频率下的电容保持仍然是一项要求。因此,为了实现更快的速度,需要新的组件设计,其中电感组件可以与电容组件分离。有三种方法可以做到这一点 - 通过电感消除、通过非常小的信号环路以及通过最小化与 PCB 接地平面的电感耦合。电感消除的一个很好的例子是数字间电容器 (IDC)。这是一个反向
案例研究:整合北美电网 162 案例研究:电网拥塞 - 疏通北美电网动脉 167 4.1 输电线设计考虑事项 173 4.2 电阻 178 4.3 电导 181 4.4 电感:实心圆柱导体 181 4.5 电感:单相两线线路和相距相等的三相三线线路 186 4.6 电感:复合导体、不等相距、捆绑导体 188 4.7 串联阻抗:带有中性导体和接地回路的三相线路 196 4.8 电场和电压:实心圆柱导体 201 4.9 电容:单相两线线路和相距相等的三相三线线路 204 4.10 电容:绞合导线、不等相间距、捆绑导线 206 4.11 分流导纳:带有中性导线和接地回路的线路 210 4.12 导线表面和地面的电场强度 215 4.13 并联电路三相线路 218
即使走线电气长度不长,R41-R44 也可用作阻尼电阻(27-51 欧姆),通过减少由杂散电感和电容引起的过冲和振铃来改善信号完整性。无论哪种情况,R41-R44 都应尽可能靠近驱动走线(信号源)的设备。如果电容器和麦克风之间的走线电感最小化,去耦电容器(C32-33、C34-35)最有效。这可以通过使用短而宽的走线来实现。如果在麦克风下方使用接地平面,则使用过孔将电容器接地垫直接连接到平面,而无需使用任何走线。
第一单元 直流电路:欧姆定律和基尔霍夫定律;独立电压源激励的串联、并联和串并联电路分析;功率和能量;电磁学:法拉第定律、楞次定律、弗莱明规则、静态和动态感应电动势;自感、互感和耦合系数的概念;磁场中储存的能量;磁滞和涡流损耗。第二单元 网络定理:叠加、戴维南和诺顿定理、互易定理、补偿、最大功率传输、特勒根和米尔曼定理、定理在直流和交流电路中的应用。
› NPC1 至 NPC2 典型 3 … 4 kHz 操作,NPC2 拓扑可提高功率密度,由于低杂散电感布局,可使用标准栅极驱动器,并减少冷却工作量