片上电感是射频集成电路 (RFIC) 中的重要无源器件 [1]。利用硅通孔 (TSV) 的 3-D 封装技术开创了片上电感、电容、滤波器等无源元件的实现 [2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19]。与传统的 2-D 电感相比,基于 TSV 的 3-D 电感具有电感密度高、体积小的优势 [20、21、22、23、24]。一些研究主要针对基于 TSV 的电感的直流电感建模。基于 3-D 全波仿真获得的 Y 参数,提出了经验近似表达式 [25, 26]。但它很耗时并且在物理上不严谨。[27] 提出了一种基于 TSV 的螺旋电感直流电感的解析模型,该模型据称很简单,但用该模型确定电感是一项非常困难的任务,因为它需要至少 4 N + 2 C 2 N + 1 次计算才能获得 N 匝电感的电感,其中 C 2 N 表示组合,它取决于电感匝数。此外,据我们所知,尚无关于基于 TSV 的螺旋电感的交流电感和品质因数的解析模型的报道。在本文中,提出了基于 TSV 的螺旋电感的直流电感公式。基于该公式及等效电路模型,建立了TSV基螺旋电感的交流电感及品质因数的分析模型
Capacitors 158 3.4 Inductance 162 3.5 Inductances in Series and Parallel 167 3.6 Practical Inductors 169 3.7 Mutual Inductance 172 3.8 Symbolic Integration and Differentiation Using MATLAB 173 Summary 177 Problems 178 4 Transients 187 4.1 First-Order RC Circuits 188 4.2 DC Steady State 193 4.3 RL Circuits 195 4.4 RC and RL Circuits with General Sources 200 4.5二阶电路206 4.6使用MATLAB符号工具箱的瞬时分析219摘要225问题225 5稳态正弦分析235 5.1正弦电流和电压236 5.2相思236 5.2相思242 5.3复杂的阻碍248 5.4电路分析和
GaN 高开关速度导致的寄生电感 GaN 的使用频率高于老化功率 MOSFET 所能承受的频率,这使得寄生电感在电源转换电路中的劣化效应成为焦点 [1]。这种电感妨碍了 GaN 超快速开关能力的全部优势的发挥,同时降低了 EMI 产生。对于大约 80% 的电源转换器使用的半桥配置,寄生电感的两个主要来源是:(1) 由两个功率开关器件以及高频总线电容器形成的高频功率环路,以及 (2) 由栅极驱动器、功率器件和高频栅极驱动电容器形成的栅极驱动环路。共源电感 (CSI) 由环路电感中栅极环路和功率环路共有的部分定义。它由图 1 中的箭头指示。
在系统级最小化环路电感是优化整体系统性能的关键杠杆。与基于串联单开关模块的解决方案相比,在单个封装内实现双向开关可降低三级系统中的寄生电感。PrimePACK 3+ 封装具有四个独立的模块内部母线,可同时实现低寄生电感和高载流能力。此概念的交错电源端子设计提供了降低整体系统电感的可能性。由于每个母线对形成带状线导体,因此杂散电感会减小。图 3 显示了三模块 (2:1) 相的模块布置和可能的直流母线结构。图 3A 的中心说明了 CC 模块的电源端子布局。
• High power capability of 40 W • Proprietary processing technique produces extremely low resistance values from 15 µΩ to 100 µΩ • Dual element eliminates need for multiple shunts • Extremely robust welded terminal to element construction • Solid metal nickel-chrome alloy resistive element with patent pending design for low TCR (< 5 ppm/°C) • Very low inductance (< 5 nH) • Low thermal EMF (as low AS <0.8μV/°C)•AEC-Q200合格
•峰Q因子> 20 @〜100MHz•峰电感密度〜300NH/mm2•L/RDC> 200NH/RDC> 100NH•100NH•L/RDC为L〜10NH的120NH/ω为120NH/ω•当前密度超过12A/mm2的速度超过1.5A的均超过12A/mm2•饱和度<3 pertrivation•饱和量均超过1.5a• •开发中的其他设备:•变压器,改进的电感器设计
由无源元件组成的电路元件对于实现高能量和功率密度具有重要意义,并且电路的研究结果接近准确。本文阐明了在不同应用中实现高电导率、电感和电容值的可能方法,并讨论了它们的组合。主要目标是获得高电感、电容和电导值。超级电容器是一种适用于脉冲功率应用的脉冲装置,其技术已在各种应用中得到充分认可。然而,超级电感的概念很新,它可以为大量应用开辟可能性。本文旨在通过对超级电容器和超导体超级电感的分析方法,简要介绍和提供有关实现超级电感的可能性的信息,概述相对磁导率和电感值、优点和应用。
将激光二极管连接到驱动器时,将串联电感降至最低将使脉冲的上升时间保持在最低水平,从而实现最短的脉冲。这意味着引线应尽可能短,激光二极管应尽可能靠近驱动器安装。如果无法将激光二极管直接连接到驱动器,则需要使用低电感传输线。传输线电感的典型值约为每英寸 20 nH。这意味着在 10 ns 内切换 40 A 的电流(di/dt 为 40 A/10 ns)将导致 80 V 的瞬态电压。较长的传输线会导致更高的感应瞬态电压,从而导致脉冲上升时间显著增加并限制性能。[2] 很好地概述了电气连接如何影响脉冲性能。
将激光二极管连接到驱动器时,将串联电感降至最低将使脉冲的上升时间保持在最低水平,从而实现最短的脉冲。这意味着引线应尽可能短,激光二极管应尽可能靠近驱动器安装。如果无法将激光二极管直接连接到驱动器,则需要使用低电感传输线。传输线电感的典型值约为每英寸 20 nH。这意味着在 10 ns 内切换 40 A 的电流(di/dt 为 40 A/10 ns)将导致 80 V 的瞬态电压。较长的传输线会导致更高的感应瞬态电压,从而导致脉冲上升时间显著增加并限制性能。[2] 很好地概述了电气连接如何影响脉冲性能。