快速可靠的响应与现有的内置光电二极管方法形成鲜明对比的是眼部安全保护,其中光电二极管信号容易受到非眼安全性相关因素(例如VCSEL模块前面的反射对象)引起的故障。此外,TARA2000-自动安全的互锁环更易于集成,因为其读出电路仅需要一个和门或MOSFET。相比之下,光电二极管的复杂读出电路需要更高数量的组件,从而导致较高的物质成本,以及对对眼睛安全风险的事件的较慢响应。
NV5具有悖论开发的光学元件 - 一种混合圆柱 /球形组合1.0英寸镜头,带有3 rd Generation 3DLodiff®Fresnel段 - 检测行业中的第一个也是最先进的镜头。这种组合提供了针对远光束(圆柱)和中/闭合梁(球形)优化的被动红外能量接收的最佳检测。该镜头还具有悖论的“均衡”检测模式,可确保整个保护区域的同等灵敏度。此外,NV5具有较小的宠物阻力或超级蠕变区镜子附加光学元件,该光学元件可在检测器下方提供较高的检测(请参阅梁图案)。
典型的现象学空间域意识(SDA)任务依赖于设计一个在可见频谱中观察到的系统。可见带宽中的任务设计提供了与要求和其他指标的遗产共同点。然而,由于依赖于可见光中观察结果的反射光,诸如日食,照明场景差和较小的物体之类的问题阻碍了SDA任务。使用不同的频带进行SDA任务是对仅在可见的观察时所存在的某些局限性的解决方案。将SDA任务扩展到红外线还提高了威胁检测敏感性,该敏感性使有效载荷更深入,从而可以对Cislunar制度进行威胁检测监测。
摘要:很少的石墨烯具有低能载体,其表现为巨大的费米子,在运输和光散射实验中都表现出有趣的特性。将共振拉曼光谱的激发能降低至1.17 eV,我们将这些巨大的准粒子靶向在靠近K点的分裂带中。低激发能量削弱了可见的一些拉曼过程,并诱发了双层和三层样品中共振2D峰的子结构的更清晰的频率分离。我们遵循每个子结构强度的激发能量依赖性,并将双层石墨烯的实验测量与从头算的理论计算进行比较,我们追溯了对探测电子散布接近的电子散布和增强电子 - 唱机元件元素元素的关节效应的此类修改。关键字:石墨烯,拉曼,电子 - 声子,巨大的狄拉克费米,运输
许多跨学科科学研究都需要对野火进行遥感,包括野火对生态的影响。几十年来,这项研究一直受到空间分辨率不足和探测器在短波和中波红外波长处饱和的阻碍,而高温 (>800 K) 表面的光谱辐射最为显著。为了解决这个问题,我们正在开发一种紧凑型高动态范围 (HDR) 多光谱成像仪。紧凑型火灾红外辐射光谱跟踪器 (c-FIRST) 利用数字焦平面阵列 (DFPA)。DFPA 由最先进的高工作温度屏障红外探测器 (HOT-BIRD) 和数字读出集成电路 (D-ROIC) 混合而成,具有像素内数字计数器以防止电流饱和,从而提供动态范围 (>100 dB)。因此,DFPA 将能够对温度变化范围从 300 K 到 >1600 K(燃烧的火灾)的目标进行非饱和高分辨率成像和定量检索。凭借从 500 公里的标称轨道高度解析地球表面 50 米级热特征的分辨率,一次观测即可捕获野火的全部温度和面积以及冷背景,从而增加每个返回字节的科学内容。使用非饱和 FPA 是一种新颖的做法,它克服了以前高辐射值使 FPA 像素饱和(从而降低了科学内容)的问题,并展示了遥感方面的突破性能力。因此,c-FIRST 适用于量化野火排放,这对于确定其对全球生态系统的影响至关重要。 c-FIRST 的 FPA 采用 InAs/InAsSb HOT-BIRD 外延材料制作,像素间距为 20 m,探测器阵列为 1280x480 格式,并与模拟 DROIC 混合。DFPA 的 50% 截止点为 ~4.5um,在 140K 工作温度下,整个 QE 光谱范围内测得的外部 QE~50%。我们将积分时间固定在 6 毫秒,以便在以 150 Hz 帧速率观察正常 300K 背景场景时在 MWIR 波段获得良好的灵敏度。对于标准模拟 ROIC,探测器像素在目标温度 ~700 K 时很容易饱和。当 D-ROIC 在 16 位模式下运行时,我们可以将饱和温度显著提高到 ~1100 K。当 D-ROIC 在超 HDR 32 位模式下(28 万亿电子阱深度)运行时,即使对于 1600 K 目标,探测器也不会接近饱和。火灾遥感的一个关键指标是可探测的最小目标尺寸。c-FIRST 可将可探测火灾的最小尺寸提高一个数量级,这主要是由于非饱和探测器的空间分辨率比 GOES 上的高级基线成像仪等当前维修仪器更高,同时功率、尺寸和重量也更低。c-FIRST 空中飞行计划于 2024 年火灾季节进行仪器测试和验证。我们预计 c-FIRST 太空验证将基于 2026 年或之后的空间技术验证机会。
在本研究中,进行了五次现场测试,以确定使用市售红外光束传感器计数、分类和称重车辆的可行性。结果表明,安装在路肩外的单个反射式红外传感器,通过外侧车道中心的反射凸起路面标记工作,可用于计数行驶车辆每个车轴一端的轮胎数量,其精度可与人类观察者或嵌入式压电条传感器相媲美。传感器安装不涉及路面切割,对交通的干扰极小。测试未在雪天或大雨天进行。两个或多个红外光束传感器阵列可用于感测车身存在、计算车速、轴距和轮胎接地面积尺寸、指示单胎或双胎、检测车辆移动方向以及感测超高车辆。带有回射凸起路面标记的离肩反射式红外传感器无需清洁即可运行长达三个月。在休斯顿高乘载车辆 (HOV) 车道上测试的双传感器阵列表明有望替代环路检测器阵列。红外传感器可以通过指示离传感器车辆轮胎来补充动态称重系统,但红外光束传感器测量值与重量之间的相关性不足以使从此类测量值中得出足够的重量估计成为可能。
估计此信息收集的公共报告负担平均为每份回应 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请将关于此负担估计或此信息收集的任何其他方面的评论(包括减轻负担的建议)发送至国防部行政服务局 (0704-0188)。受访者应注意,尽管有任何其他法律规定,但如果信息未显示当前有效的 OMB 控制编号,则任何人均不会因未遵守信息收集而受到任何处罚。请不要将您的表格返回上述组织。1. 报告日期 (DD-MM-YYYY) 2012 年 9 月 26 日
这些行为并非直接源自其组成材料,而是源自其亚波长结构[1,2],以及最近的主动控制[3]。在光学领域,超材料在电磁学和光子学中提供了突破性的应用[4-6],例如以亚波长分辨率聚焦和成像[7]和负折射[8],因此在过去的几十年里引起了人们的极大兴趣。这些亚波长结构能够直接调整光的性质,包括振幅、相位和偏振。由于其支持表面等离子体极化子的能力[9],银和金等贵金属一直是可见光超材料构造块的传统材料选择,而等离子体太赫兹 (THz) 纳米天线通常基于重掺杂的半导体。 [10] 然而,这些超材料通常依赖于其组成块的谐振行为,并且在光频率下存在高电阻损耗,这限制了此类超材料和相关设备的功能在尖锐的频带范围内。更一般地说,基于谐振行为的超材料仅在
摘要:红外量子吸收光谱是量子传感技术之一,通过可见光或近红外光子检测可估算样品的红外光学特性,无需红外光源或探测器,这一直是提高灵敏度和光谱仪小型化的障碍。然而,实验演示仅限于波长短于 5 µ m 或太赫兹区域,而尚未在通常用于识别化合物或分子的 1500–500 cm − 1(6.6 至 20 µ m)的所谓指纹区域实现。本文我们报告了指纹区域量子傅里叶变换红外 (QFTIR) 光谱的实验演示,通过该实验可以从用单像素可见光探测器获得的傅里叶变换量子干涉图中获得吸收光谱和相位光谱(复杂光谱)。作为演示,我们获得了硅晶片在 10 µ m (1000 cm − 1 ) 左右的透射光谱,以及合成氟聚合物片聚四氟乙烯在 8 至 10.5 µ m (1250 至 950 cm − 1 ) 波长范围内的复杂透射光谱,其中可以清楚地观察到由于 CF 键的拉伸模式而产生的吸收。这些结果为基于量子技术的新型光谱装置开辟了道路。