界面裁缝对于钙钛矿太阳能电池(PSC)的效率和稳定性至关重要。报告的界面工程主要集中在能级转弯和陷阱状态钝化上,以改善PSC的光伏性能。在这篇综述中,根据材料界面的电子转移机制的基础进行了分子修饰。对能量水平修改和陷阱钝化的深入分析,以及接口调整中采用的通用密度功能理论(DFT)方法。此外,还讨论了通过界面工程来解决环境保护和大规模迷你模型制造的策略。本评论可以指导研究人员了解界面工程,以设计有效,稳定和环保PSC的接口材料。
通过导体驱动的电子电流可以通过著名的库仑阻力效应诱导另一个导体中的电流。在移动的流体和导体之间的接口上已经报道了类似的现象,但是它们的解释仍然难以捉摸。在这里,我们利用了非平衡的Keldysh框架,开发了一种相互交织的流体和电子流的量子机械理论。我们预测,全球中性液体可以在其流动的实心壁中产生电子电流。这种流体动力学库仑阻力均来自液体电荷波动与固体电荷载体之间的库仑相互作用,以及由实心声子介导的液体电子相互作用。我们根据固体的电子和语音特性以及液体的介电响应明确地得出了库仑阻力电流,这一结果与液态涂纸界面上的最新实验一致。此外,我们表明当前一代抵消了从液体到固体的动量转移,从而通过量子反馈机制降低了流体动力摩擦系数。我们的结果为控制量子水平控制纳米级液体流量提供了路线图,并提出了设计具有低流体动力摩擦的材料的策略。
l指示工作节点上的AS-Interface Safety Nodes的安全代码。地址设备顶部的As-Interface连接适配器用于将AS AS AS AS AS AS AS AS接口节点连接到地址设备,例如传感器,执行器和模块。可以通过将其直接插入AS-Interface Connection适配器:带有M12连接器,Varikont M-System,Varikont System,FP Design的设备,将其连接到地址设备。类型G1和G4。对于具有集成地址插座的设备设计,请使用可选的适配器电缆。
摘要 - 脑部计算机界面(BCI)是人脑和计算机之间通信的常见设备。本文研究了使用3D界面为BCI机器使用的效率。为此,已修改了P300拼写器(使用户能够使用脑电波在屏幕上拼写字符的BCI设备)已进行了修改。P300拼写器的经典虚拟键盘被3D立体图像替换,从而增强了设备的人体工程学特征。此外,3D接口上的范围范式可以以三种方式影响设备的孔隙:准确性,速度和容量。本文提出了两种称为天然3D和平行2D界面的不同浮雕范式,并研究了它们在提到的三种措施方面的效果。前者在3D空间中的平面,后者包括不同3D深度的平行键盘的灰烬。提出了这些效果的理论分析。通过从实际受试者获得的实验数据来验证结果,并与经典的2D界面进行了比较。两个提出的键盘都提高了设备的速度,而平行2D的总性能比天然3D更好。
在中枢神经系统病变后,为患有运动障碍的患者开发可靠的辅助设备仍然是非侵入性脑部计算机界面(BCIS)领域的主要挑战。这些方法主要由脑电图造影,并依靠高级信号处理和机器学习方法来提取运动活动的神经相关性。但是,尽管巨大的努力仍在进行,但它们作为有效临床工具的价值仍然有限。我们主张,一个相当被忽视的研究途径在于努力质疑传统上针对非侵入性运动BCIS的神经生理标记。我们提出了一种替代方法,该方法是基于非侵入性神经生理学的最新进展,特定主题的特征特征特征提取了通过(可能是磁脑摄影术 - 优化)的磁磁磁性术记录的感应活动爆发。这条道路有望克服现有限制的显着比例,并可以促进在康复协议中更广泛地采用在线BCI。
这篇论文是由Scholarworks @ Utrgv免费带给您的。它已被授权的ScholarWorks @ UTRGV的授权管理人纳入这些论文和论文。有关更多信息,请联系William.flores01@utrgv.edu。
脑机接口于五十年前出现,是一种新的通信技术,允许患有严重神经肌肉疾病的患者与外界进行交流和互动。无线技术的快速发展为实验室外的应用打开了大门,例如娱乐、工业、营销和教育领域。越来越多的脑机技术新应用正在涌现,包括物联网。本期特刊将探讨非侵入式和侵入式脑机接口技术的进展、挑战和未来前景。发行范围包括但不限于:BCI 技术、生物医学信号分析、建模 - 神经信息学、生物医学工程、控制和机器人技术、计算机工程、认知科学 - 生物伦理学、神经生物学 - 神经外科、神经康复 - 生物反馈、生物物理学 - 生物化学。
和许多研究领域的情况一样,脑机接口 (BCI) 领域数据共享仍然很少,尤其是在被动 BCI 领域——即基于从脑部测量估计的用户心理状态实现隐性交互或任务调整的系统。此外,该领域的研究目前面临一个重大挑战,即解决脑信号变异性,例如跨会话变异性。因此,为了在该领域发展良好的研究实践,并使整个社区能够联合起来进行跨会话估计,我们创建了第一个关于跨会话工作量估计的被动脑机接口竞赛。本次竞赛是第三届国际神经人体工程学会议的一部分。数据是从 15 名志愿者(6 名女性;平均 25 岁)获得的脑电图记录,他们进行了 3 次多属性任务组合 II (MATB-II) 测试,每次测试间隔 7 天,每场测试有 3 个难度级别(伪随机顺序)。数据(训练和测试集)与 Matlab 和 Python 玩具代码一起在 Zenodo 上公开提供(https://doi.org/10.5281/zenodo.5055046)。到目前为止,该数据库的下载次数已超过 900 次(2021 年 12 月 10 日所有版本的独立下载次数:911)。来自 3 大洲的 11 个团队(31 名参与者)提交了他们的作品。表现最好的处理流程包括基于黎曼几何的方法。虽然结果优于调整后的随机水平(对于 3 类分类问题,α 为 0.05,结果为 38%),但准确率仍然低于 60%。这些结果清楚地强调了跨会话估计的真正挑战。此外,它们再次证实了黎曼方法对 BCI 的稳健性和有效性。相反,三分之一的方法(4 个团队)基于深度学习获得了随机水平结果。与传统方法相比,这些方法在本次比赛中没有表现出更优的结果,这可能是由于严重的过度拟合。然而,这次比赛是共同努力解决 BCI 变异性并促进包括可重复性在内的良好研究实践的第一步。
摘要 — 本文介绍了一种新的迁移学习方法,即群组学习,它可以联合对齐多个域(多对多),以及一种扩展方法,即快速对齐,它可以将任何其他域与先前对齐的域组对齐(多对一)。在脑机接口 (BCI) 数据上评估了所提出的组对齐算法 (GALIA),并研究了该算法的最佳超参数值以了解分类性能和计算成本。使用了六个公开的 P300 数据库,包含来自 177 个受试者的 333 个会话。与传统的针对特定受试者的训练/测试流程相比,群组学习和快速对齐均显著提高了分类准确率,但临床受试者的数据库除外(平均改进:2.12±1.88%)。GALIA 利用循环近似联合对角化 (AJD) 来找到一组线性变换,每个域一个,联合对齐所有域的特征向量。群组学习实现了多对多迁移学习,同时不会损害非临床 BCI 数据的分类性能。快速对齐进一步扩展了任何未见域的群组学习,从而允许具有相同属性的多对一迁移学习。前一种方法使用来自先前受试者和/或会话的数据创建单个机器学习模型,而后一种方法利用训练后的模型来处理未见域,无需进一步训练分类器。