EEI混合逆变器是使用太阳能加储存技术的中小型杂种植物的解决方案。由于他的高可靠性,鲁棒性和灵活的配置,它是迷你和微电网项目的理想逆变器。通过EEI MPPT刺激促进的太阳阵列集成,以增加太阳能生产并优化功率输出。
下一步是将能量需求从 kWh 转换为电池安培小时 (Ah),因为这是通常测量电池存储容量的方式。使用上面的负载曲线和 48 Vdc 标称电池组,将 21,500 Wh 除以 48 Vdc。结果 448 Ah 是此应用的最小电池组尺寸。由于能量需求基于 24 小时速率,因此应使用相同 24 小时放电速率的电池 Ah,因为电池容量 (Ah) 将根据放电速度而变化(见下表)。使用下表中列出的 OutBack 电池,两串 EnergyCell 220GH 电池(每串串联四个 12 Vdc 电池)可用于总共 432 Ah,略低于我们的估计值。如果我们想更保守一点,那么我们可以选择使用三串 EnergyCell 170RE 电池,总共 471 Ah。
摘要本文介绍了基于微控制器正弦脉冲宽度调制方案的单相H桥逆变器的开发,用于住宅负载应用。减少常规逆变器的谐波内容的任务需要本研究论文。使用微控制器(AT-MEGA 328)生成电源开关启动信号。此外,微控制器能够存储所需的命令以生成必要的波形,以通过适当的设计控制H桥逆变器的幅度和频率。通过减少的总谐波失真,获得了纯正弦波和电流的正弦波。该逆变器旨在用于直流电源(电池)的独立式。在本文中,开发了一个框图,其中包含电池,H桥逆变器,升压变压器,L-C滤波器和控制系统。讨论了所有这些块。最后,生成和讨论MATLAB/SIMULINK模拟和实验结果。用48.5欧姆电阻载荷测试了1.2 KVA设计的原型,并发现电压TH的相等值小于220 VRMS的4.00%。
AI 人工智能 BESS 电池储能系统 BOS 系统平衡 CMMS 计算机化维护管理系统 COO 拥有成本 CRADA 合作研究与开发协议 DOE 美国能源部 EMI/EMC 电磁干扰和兼容性 EPC 工程、采购和施工 ESIF 能源系统集成设施 ESS 储能系统 EV 电动汽车 FMEA 故障模式和影响分析 GFPI 接地故障保护和中断 HALT 高加速寿命试验 IBR 基于逆变器的资源 IEC 国际电工委员会 IGBT 绝缘栅双极晶体管 IRA 通货膨胀削减法案 LCC 生命周期成本 LCOE 平准化能源成本 MLPE 模块级电力电子器件 MOSFET 金属氧化物半导体场效应晶体管 NDA 保密协议 NERC 北美电力可靠性公司 NREL 国家可再生能源实验室 O&M 运营和维护 OEM 原始设备制造商 PCB 印刷电路板 PPA 购电协议 PV 光伏 PVROM 光伏可靠性、运营和管理 R&D 研究与开发 RBD 可靠性框图 RETC可再生能源测试中心 RSD 快速关机系统 SCADA 监控和数据采集 SETO 太阳能技术办公室 SiC 碳化硅 SOA 安全操作区 SSTDR 扩频时域反射法 TCO 总拥有成本
它在满足我们对电能的需求方面发挥着重要作用,它代表了直流 (DC) 源。因此,它不适用于交流 (AC) 住宅负载。本文提出了一种智能单相低成本逆变器的设计和实际实现,这可能是降低光伏系统总体成本和供应交流负载的有效解决方案。通过设计低成本控制和电源电路实现低成本逆变器。在电源电路中,光伏模块在最大功率点 (MPP) 附近运行,并通过逆变器开关满足交流负载要求。控制电路使用微控制器,该微控制器提供智能系统用于与用户交互以及远程控制和监控,此外还使用数字控制将交流输出电压保持在所需值。
安装基础承载力大于3.3t/m2(TBD)、基础使用年限大于20年(TBD)、基础等级3mm/㎡(TBD)。
摘要 — 电网形成 (GFM) 逆变器系统的功率硬件在环 (PHIL) 仿真有助于测试极端场景,例如并网到离网的转换和没有刚性电网的孤岛微电网运行。据作者所知,文献中的大多数研究都集中于电网跟踪逆变器系统的 PHIL 仿真。只有少数研究关注 GFM 逆变器,而这些研究具有挑战性且存在问题,尤其是对于大功率应用而言。本文提出了一种新颖的 PHIL 仿真平台,可实现大功率 GFM 逆变器系统的接口。本文提出了虚拟 GFM 逆变器的概念,作为所提出的 PHIL 接口的一部分。在 PHIL 接口中添加虚拟 GFM 逆变器扩展了传统的理想变压器模型 (ITM) 方法,使其能够克服现有 ITM 方法的不稳定性问题。在验证阶段,使用所提出的接口方法对三相、480 V、125 kVA GFM 逆变器系统进行了 PHIL 实验。结果证实,所提出的 PHIL 仿真方法对于 GFM 逆变器系统性能良好且稳定。关键词 — 下垂控制、电网形成逆变器、基于 ITM 的接口方法、电力硬件在环仿真。
规则 21 和底层通用智能逆变器配置文件 (CSIP) 引用了 IEEE 2030.5 协议的功能,以便与逆变器或聚合点进行通信,尽管允许使用其他协议。IEEE 2030.5 协议支持广泛的 DER 应用,其中逆变器控制代表该功能的一个子集。加州主要的 IOU 创建了通用智能逆变器配置文件工作组来定义旨在支持规则 21 要求的正式 CSIP 指南。CSIP 指南列出了规则 21 定义的一组一般要求和一组 IEEE 2030.5 协议特定的要求,定义了如何在 IEEE 2030.5 的背景下实现一般要求。然而,后者假设公用事业公司希望直接处理数百万台客户拥有的逆变器,这给客户服务、数据分析、通信基础设施等带来了挑战。