摘要:如今,车辆中的内燃机被电动机取代,让位于电动汽车,从而降低了环境影响,较高的效率和降低温室气体的排放。电动汽车的动力总成是其最突出的子系统,电池和牵引逆变器是关键组件。因此,由于其相关性,两个组件的设计方面的进步至关重要。在本文中,与传统的两级动力总成设计相比,分析了通过将模块化电池库与多级NPC牵引逆变器拓扑结合使用的动力总成设计方法实现的潜在好处。分析了几个方面:模块化,复杂性,电池包装平衡,逆变器损耗,电动机交流电压谐波失真,电动机通用模式电压和可靠性。尤其是,根据选定的设计方案的比较研究,基于模块化电池组和多级技术的拟议设计方法显示,逆变器损失的可能减少高达55%,电动机电动机总谐波扭曲高达65%,在RMS平均电压电压中最多可减少75%。
本应用说明提供了非垂直安装指南。除了逆变器安装指南中提供的安装说明外,还应遵循这些指南。不遵守这些指南可能会导致逆变器保修失效。
摘要 - 技术发展不断增加,这可以通过日常需求中使用的电子设备数量的增加来看出,其中之一是转化电能的科学,即5级逆变器。5阶段逆变器是可以将直流电转换为AC电力的电压更换器。为了通过谐波消除技术获得正弦的5级逆变器电压波输出,进行了许多研究。谐波消除技术是一种5级逆变器信号处理技术,可用于最大开关模式,以获得正弦输出波形和最小THD值,并结合STM32F407微控制器控制信号发电机电路和MOSFET驱动器电路,预计这是5级Inverter Wave Formform的高级输出波动。正弦。测试是以PSIM软件和实际实现形式进行的软件进行的。基于结果,所使用的方法能够产生逆变器输出电流和电压为4.38%。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要 - 分配系统中安装在分配系统中的Battery储能系统(BESS)和太阳能电动汽车(PV)逆变器源通常旨在提高系统的弹性。这些来源可以通过增加和保持服务的连续性,同时在高需求期间提供剃须能力,从而补充大量电力系统。在配置用于与下垂(GFMD)特性的网格形成时,可以设计为可调节能源,以支持往返岛屿条件的无缝过渡,而无需更改模式,没有中断。通过分布公用事业部署的传统保护方案使用倒数过时的元素(51)来协调网络中的保护设备,例如保险丝,隐居器和断路器。在具有基于逆变器的来源的岛屿系统中,由于可用故障电流量有限,因此需要修改此保护方案。逆变器(BESS和PV)由于其切换设备的热量考虑,其短路能力受到限制,从而有效地使逆变器成为系统故障的当前限制源。结果是,逆变器不作为传统来源,而保护性继电器计划必须适应有限的断层电流贡献。作者评估了用BESS作为能源供应的分配变电站的岛化操作。实时数字仿真和硬件中的结果(HIL)测试产生了一种简单的确定时间过电流协调方法,并具有标准的保护性继电器元素,以保护分配馈线。为了在网格和岛屿运行期间成功运行,继电器需要在系统被网格且确定的时间过电流协调的同时区分时间过电流的协调性。根据创新的频率移动方法启用了保护性继电器元素,以避免需要保护级的通信渠道。在岛状条件下,一种负载方案为系统提供了额外的弹性和稳定性,同时改善了连接负载的服务连续性。本文讨论了基于逆变器的能源在分配系统中的使用,这些来源的故障当前贡献,岛岛操作期间的保护性继电器解决方案,在岛状条件下的负载拆料方案以及检测开源条件(在常见耦合[PCC]的上游[PCC]的上游上游)。所有讨论点都用示例说明。
摘要:住宅规模的电网连接系统中可再生能源的实施已经很流行,并且此类系统的增长每年都在增加。电网连接的太阳能系统安装和操作相对简单;此外,与其他可再生能源和电网连接选项相比,此类发电厂相对便宜。然而,大多数住宅电网连接系统所有者认为,一旦可再生能源 (RES) 可用,他们将不再依赖配电系统运营商 (DSO)。通常,安装后,如果没有 DSO,电网连接系统通常会因电网故障而关闭,尽管有 RES 可用;因此,此类 RES 电网连接系统所有者在后期阶段的目标是至少部分地独立于 DSO。在这种变化之后,开发与离网系统的电网连接逆变器连接的重要性将会增加。在开发这种系统连接时,本文分析的主要问题是在不影响系统中累积能量水平的情况下控制过剩功率。因此,提出了一种这种系统结构的解决方案,其主要优点是控制过剩功率而不影响累积能量水平。
o 尤其是同步发电机 (SG) 与电网跟踪 (GFL) 逆变器之间、SG 与电网形成 (GFM) 逆变器之间以及 SG、GFM 逆变器和 GFL 逆变器之间的动态。• 在选择基于逆变器的资源 (IBR)(GFM、GFL 或混合)及其与现有同步发电和不断增加的可再生能源渗透之间的控制时,微电网规划人员将面临各种选择。
摘要 - 本文制定了具有断层乘车(FRT)功能的网格形成(GFM)逆变器的改进控制策略,以确保在断层条件下,尤其是岛状的微电网和不对称断层的微电网稳定运行。提出的控制策略包括对积极序列和负序列控制以及自适应虚拟阻抗(VI)控制的双重控制。与现有作品不同,所提出的策略仅对积极序列控制的D组分应用VI控制,并将正序控制的Q分量和负序列控制的DQ组成的Q分量为零,从而提高了稳定性,从而提高了稳定性和平衡的三相电压。VI控制的自适应特征可确保在严重断层下GFM逆变器的稳定性,这可能会导致内部电流环的饱和,如果VI不自适应,则不稳定。模拟各种不平衡断层具有高断层阻抗的结果表明,提出的控制策略可提高GFM逆变器的稳定性,并在岛的微电磁体中实现稳定且平衡的输出电压。和该算法还提高了具有高断层阻抗和低断层阻抗的平衡断层下GFM逆变器的稳定性。
摘要 —本文研究了混合发电(同步发电机 (SG)、电网形成 (GFM) 和电网跟踪 (GFL) 逆变器)的微电网暂态稳定性,随着渗透水平的提高,朝着 100% 可再生能源发电微电网迈进。具体来说,通过电磁暂态研究评估了具有 SG 和 GFL 逆变器的微电网、具有 GFM 逆变器的 SG 以及具有 GFM 和 GFL 逆变器的 SG 在每种渗透情况下的动态,其中有两个关键动态事件:计划外孤岛和泵送感应电机负载中的切换。分析和仿真结果表明,与 SG 并联运行的 GFL 逆变器的微电网可以提供比 GFM 逆变器更快的功率响应,以补偿频率和电压的偏差。混合 SG、GFM 和 GFL 逆变器的方案具有最佳的暂态和稳态稳定性,以实现 100% 基于逆变器的资源 (IBR) 渗透。这项综合研究为微电网工程师在面临安装 IBR(GFL、GFM 或混合)的各种选择时了解微电网的稳定性提供了有用的参考。
1 𝑔 𝑚5 ⁄ 和 [1 + (𝑔 𝑚4 + 𝑔 𝑚𝑏4 )𝑟 𝑜4 ]𝑟 𝑜2 + 𝑟 𝑜4 ≫ 1 𝑔 𝑚5 ⁄ ,低频下的方程 (5)、(6) 和 (10)