对于使用模型检查技术进行的系统验证,基于二元决策图 (BDD) 的符号表示通常有助于解决众所周知的状态空间爆炸问题。基于符号 BDD 的表示也被证明可以成功分析出现的系统族,例如,通过可配置参数或遵循面向特征的建模方法。此类系统族的状态空间面临参数或特征数量的额外指数爆炸。众所周知,有序 BDD 中变量的顺序对于模型表示的大小至关重要。特别是对于从现实世界系统自动生成的模型,由于变量顺序错误,族模型甚至可能无法构建。在本文中,我们描述了一种称为迭代变量重新排序的技术,它可以构建大规模的族模型。我们通过一个具有冗余机制的飞机速度控制系统来证明我们的方法的可行性,该系统以概率模型检查器 P RISM 的输入语言建模。我们表明,标准重新排序和动态重新排序技术分别由于内存和时间限制而无法构建系列模型,而新的迭代方法则成功生成了符号系列模型。
如今,由于其多种应用,场景文本识别引起了越来越多的关注。大多数最先进的方法都采用带有注意机制的编码器框架,从左到右生成文本。尽管表现令人信服,但这种顺序解码策略限制了推理速度。相反,非自动回归模型提供了更快的同时预测,但通常会牺牲准确性。尽管使用明确的语言模型可以提高性能,但它会负担计算负载。此外,将语言知识与视觉信息分开可能会损害最终预测。在本文中,我们提出了一种替代解决方案,该解决方案使用平行且迭代的解码器,该解码器采用了简单的解码策略。此外,我们将文本识别视为基于图像的条件文本生成任务,并利用离散扩散策略,确保对双向上下文信息的详尽探索。广泛的实验表明,所提出的方法在基准数据集(包括中文和英语文本图像)上取得了卓越的结果。
量子计算 (QC) 的出现提供了一种全新的计算范式,它利用量子机制的原理,有望以指数级加速特定问题的解决,同时显著减少数据存储空间等资源的消耗 [ 12 , 25 , 31 , 36 ]。直观地说,量子系统可以呈现混合状态,本质上是同时存在于几种纯状态,利用这一事实,可以同时对所有这些状态进行计算。这种效应称为量子并行性,它将量子计算机与只能执行顺序计算的经典计算机区分开来 [ 28 ]。绝热量子计算 (AQC) 是 QC 的一个子领域,它已成为一种很有前途的方法,可以在经典计算机上近似解决众所周知的组合问题,比如 NP 难题 [ 21 , 22 ]。 AQC 优化算法通常解决的问题类别之一是所谓的二次无约束二元优化 (QUBO) 问题,其形式为
本文考虑了具有执行器和传感器故障、不确定性和干扰的线性参数变化系统的故障估计 (FE) 和容错控制 (FTC)。在设计中需要考虑 FE 和 FTC 功能之间不可避免的耦合,以确保基于 FE 的 FTC 闭环系统的整体性能和鲁棒性。本文提出了一种迭代策略,利用分离原理和小增益定理的概念实现 FE 和 FTC 的稳健集成。迭代算法涉及在每次迭代中求解多目标线性矩阵不等式优化问题,并具有有限步收敛保证。通过数值模拟说明了所提算法的有效性及其相对于现有工作的优势。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
1.引言多光谱图像通常提供互补信息,如可见光波段图像和红外图像(近红外或长波红外)。有强有力的证据表明,融合的多光谱图像提高了解释的可靠性(Rogers & Wood,1990;Essock 等人,2001);而彩色多光谱图像则提高了观察者的表现和反应时间(Toet 等人,1997;Varga,1999;Waxman 等人,1996)。计算机可以自动分析灰度融合图像(用于目标识别);而彩色图像则易于人类用户解释(用于视觉分析)。想象一下,夜间导航任务可以由配备多传感器成像系统的飞机执行。分析组合或合成的多传感器数据将比同时监测多光谱图像(如可见光波段图像(例如,图像增强,ll)、近红外(NlR)图像和红外(lR)图像)更方便、更有效。在本章中,我们将讨论如何使用图像融合和夜视彩色化技术合成多传感器数据,以提高多传感器图像的有效性和实用性。预计这种图像合成方法的成功应用将提高遥感、夜间导航、目标检测和态势感知的性能。这种图像合成方法涉及两种主要技术,即图像融合和夜视彩色化,分别在下面进行回顾。图像融合通过整合互补数据来组合多源图像,以增强各个源图像中明显的信息,并提高解释的可靠性。这样可以得到更准确的数据(Keys et al.,1990)并提高实用性(Rogers & Wood,1990;Essock et al.,1999)。此外,据报道,融合数据提供了更为稳健的操作性能,例如增加了置信度、减少了歧义性、提高了可靠性和改进了分类(Rogers & Wood,1990;Essock et al.,2001)。图像融合的一般框架可以在参考文献(Pohl & Genderen,1998)中找到。在本章中,我们的讨论重点是像素级图像融合。对融合图像质量的定量评估对于客观比较各个融合算法非常重要,它可以测量有用信息的数量和融合图像中引入的伪影数量。
1 Novo Nordisk生物可持续性基金会,丹麦技术大学,公里。Lyngby,丹麦2号生物技术与生物医学系,丹麦技术大学,公里。Lyngby,丹麦,丹麦技术大学应用数学与计算机科学系3。Lyngby,丹麦,4联合生物能源研究所,加利福尼亚州埃默里维尔,美国,美国5个生物系统与工程部,劳伦斯·伯克利国家实验室,伯克利,美国加利福尼亚州伯克利,美国6化学和生物分子工程系6深圳高级技术学院合成生物学研究所,中国深圳
随着解码步骤的数量增加,迭代非自回旋变压器的计算益处减小。作为一种补救措施,我们介绍了DI仍然是Untiple S Teps(Dims),这是一种简单而有效的蒸馏技术,以减少达到一定的翻译质量所需步骤的数量。截止的模型享有早期迭代的计算益处,同时从几个迭代步骤中保留了增强性。暗示着两个模型,即学生和老师。在多个解码步骤后,在老师通过缓慢移动的平均值跟随学生的同时,对学生进行了优化,以预测老师的输出。移动平均线使教师的知识更新,并提高了老师提供的标签的质量。在推断期间,学生用于翻译,并且不添加其他构成。我们验证了DIMS对在WMT'14 DE-EN的蒸馏和原始验证上获得7.8和12.9 BLEU点改进的各种模型的有效性。此工作的完整代码可在此处提供:https://github.com/ layer6ai-labs/dims。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2025年2月6日。 https://doi.org/10.1101/2025.02.04.636130 doi:Biorxiv Preprint
规划对于在复杂的决策任务中运作的代理商至关重要,尤其是在人类机器人互动(HRI)方案中,该方案通常需要适应性和导航动态环境的能力。大型语言模型(LLMS)以其出色的自然语言理解能力而闻名,通过处理上下文和语言提示,可以在HRI中提高HRI的计划。但是,它们的有效性受到空间推理中固有的缺点的限制。现有的基于LLM的计划框架通常取决于与经典计划方法结合或难以适应动态环境,从而限制了它们的实际适用性。本文审查了环境反馈机制和迭代计划是否可以增强LLM的计划能力。具体来说,我们提出了“自适应迭代反馈提示”(AIFP)路径计划框架。在AIFP中,LLM生成了部分轨迹,并通过环境反馈评估了潜在的碰撞。基于评估,AIFP升级了轨迹或重新计划。我们的初步结果表明,AIFP将基线的成功率提高了33。3%,并生成有效的,适当的复杂路径,使其成为动态HRI场景的有希望的方法。
摘要 —建筑物占一次能源的近 40% 和温室气体排放的 36%,是推动气候变化的主要因素之一。减少建筑物能耗,实现零能耗建筑是确保实现未来气候和能源目标的重要支柱。然而,由于建筑负荷和客户舒适度需求的高度不确定性,以及建筑热特性的极端非线性,开发有效的零能耗建筑能源管理 (BEM) 技术面临着巨大的挑战。本文提出了一种基于学习的新型迭代物联网系统来应对这些挑战,以实现互联建筑 BEM 的零能耗目标。首先,基于物联网的 BEM 系统中的所有建筑都与聚合器共享其运行数据。其次,聚合器使用这些历史数据训练基于深度确定性策略梯度方法的深度强化学习模型。学习模型生成预冷或预热控制动作,以实现建筑供暖通风和空调 (HVAC) 系统的零能耗 BEM。第三,为解决暖通空调系统与建筑内部热增益负荷之间的耦合问题,开发了一种迭代优化算法,将基于物理和基于学习的模型相结合,通过合理安排建筑负荷、电动汽车充电周期和储能系统,最大限度地减少现场太阳能光伏发电量与实际建筑能耗之间的偏差。最后,考虑客户的舒适度要求,制定最佳负荷运行计划。然后,所有连接的建筑物根据聚合器发布的负荷运行计划运行其负荷。通过使用来自 Pecan Street 项目的真实建筑数据进行模拟,验证了所提出的基于学习的迭代物联网系统。