摘要 人工智能 (AI) 和机器人教练有望通过社交互动提高患者对康复锻炼的参与度。虽然之前的研究探索了人工智能和机器人教练自动监控锻炼的潜力,但这些系统的部署仍然是一个挑战。先前的研究表明,缺乏利益相关者参与设计此类功能是主要原因之一。在本文中,我们介绍了我们在四名治疗师和五名中风后幸存者中努力引出人工智能和机器人教练如何以有效和可接受的方式与患者互动并指导患者锻炼的详细设计规范的努力。通过反复的问卷调查和访谈,我们发现中风后幸存者和治疗师都欣赏人工智能和机器人教练的潜在好处,以实现更系统的管理并提高他们在康复治疗中的自我效能和积极性。此外,我们的评估揭示了一些实际问题(例如,认知障碍者互动可能存在困难、系统故障等)。我们讨论了利益相关者早期参与的价值以及补充系统故障的交互技术,同时也支持个性化的治疗课程,以更好地部署人工智能和机器人运动教练。
摘要 —建筑物占一次能源的近 40% 和温室气体排放的 36%,是推动气候变化的主要因素之一。减少建筑物能耗,实现零能耗建筑是确保实现未来气候和能源目标的重要支柱。然而,由于建筑负荷和客户舒适度需求的高度不确定性,以及建筑热特性的极端非线性,开发有效的零能耗建筑能源管理 (BEM) 技术面临着巨大的挑战。本文提出了一种基于学习的新型迭代物联网系统来应对这些挑战,以实现互联建筑 BEM 的零能耗目标。首先,基于物联网的 BEM 系统中的所有建筑都与聚合器共享其运行数据。其次,聚合器使用这些历史数据训练基于深度确定性策略梯度方法的深度强化学习模型。学习模型生成预冷或预热控制动作,以实现建筑供暖通风和空调 (HVAC) 系统的零能耗 BEM。第三,为解决暖通空调系统与建筑内部热增益负荷之间的耦合问题,开发了一种迭代优化算法,将基于物理和基于学习的模型相结合,通过合理安排建筑负荷、电动汽车充电周期和储能系统,最大限度地减少现场太阳能光伏发电量与实际建筑能耗之间的偏差。最后,考虑客户的舒适度要求,制定最佳负荷运行计划。然后,所有连接的建筑物根据聚合器发布的负荷运行计划运行其负荷。通过使用来自 Pecan Street 项目的真实建筑数据进行模拟,验证了所提出的基于学习的迭代物联网系统。
摘要 如今,价值模型越来越多地被讨论,作为在工程设计中预先加载概念设计活动的一种手段,其最终目标是降低与从系统角度做出的次优决策相关的成本和返工。然而,研究界对于价值模型到底是什么、有多少种类型的价值模型、它们的输入输出关系以及它们在工程设计过程时间线上的使用情况并没有达成共识。本文基于在航空航天和建筑设备行业进行的五个案例研究,介绍了如何在工程设计过程中定制价值模型的开发。最初的描述性研究结果以七个经验教训的形式总结出来,在设计用于设计决策支持的价值模型时应予以考虑。从这些经验教训中,本文提出了一个六步框架,该框架考虑了在获得新信息时更新价值模型的性质和定义的必要性,从基于专家判断的初步估计转向详细的定量分析。
本文提出了一种在任务数量超过代理数量 5-20 倍的情况下 MRS 组中的分工迭代方法。该方法基于选择任务集群和由 MRS 组中的代理进行集体决策的迭代程序。提出了迭代方法的三种变体,不同之处在于代理选择集群执行任务的顺序。该方法的类似物是集体决策分工的贪婪算法。根据对不同数量的代理的模拟结果,与贪婪算法相比,在任务集群数量不同的情况下,5 个代理的结果可以提高 18%,7 个代理的结果可以提高 35%,10 个代理的结果可以提高 15%,15 个代理的结果可以提高 12%。
交互式系统的btract开发人员都有各种交互技术可供选择,每个相互作用的技术都具有个人优势和局限性,以考虑到所考虑的任务,上下文和用户。尽管尚未确定桌面,移动和虚拟现实应用程序的分类法,但尚未建立增强现实(AR)分类法。然而,最新的沉浸式AR技术(即,戴头饰或基于投影的AR),例如具有集成的手势和语音传感器的不受束缚的耳机的出现,已经引入了额外的输入方式,因此已经引入了新型的多模式互动方法。为提供当前沉浸式AR系统的交互技术概述,我们对2016年至2021年之间的出版物进行了文献综述。基于44篇相关论文,我们开发了一项涉及两个识别维度的分类学分类法 - 任务和方式。我们进一步提出了一种迭代分类性开发方法对人类计算机相互作用领域的改编。最后,我们讨论了观察到的趋势和对未来工作的影响。
行业4.0应用程序涉及更多数量的传感器或物联网(IoT)设备来支持行业自动化。它涉及更多的计算来分析从处理单元的几个关键部分收集的传感器数据。稀疏信号处理是在通信和信号处理领域中具有许多应用的。本文介绍了一种新的方法,可以借助水平交叉采样(LCS)和基于回溯的基于回溯的迭代硬阈值(BIHT)算法进行重建。该过程涉及,信息信号使用发射机侧的不均匀采样将信息信号转换为随机稀疏信号,然后可以使用接收器侧的BIHT算法将其重建。模拟结果表现出所提出的BIHT重建的出色性能。
当前的药物发现模式在很大程度上侧重于高通量筛选 (HTS),这种方法是针对目标筛选大量化合物库以确定合适的开发起点。1,2 典型 HTS 的命中率相对较低,在大多数测定中通常低于 1%,3 需要大型化合物库才能产生足够数量的命中,以使药物开发计划得以推进。这些库的大小导致筛选成本高昂,并且活动的准备时间较长。筛选活动的成本达到数十万美元并不罕见。随着筛选中出现更多与疾病相关但也更复杂的表型读数, 4 每种筛选化合物的成本往往会增加。根据我们的经验,每孔超过 1.50 美元的成本并不罕见。显然,需要一些方法来提高这些屏幕的回报率。此外,现在比以往任何时候都有更多的化学空间可以轻易购买,并且人们希望查询越来越多的化学物质。
对于使用模型检查技术进行的系统验证,基于二元决策图 (BDD) 的符号表示通常有助于解决众所周知的状态空间爆炸问题。基于符号 BDD 的表示也被证明可以成功分析出现的系统族,例如,通过可配置参数或遵循面向特征的建模方法。此类系统族的状态空间面临参数或特征数量的额外指数爆炸。众所周知,有序 BDD 中变量的顺序对于模型表示的大小至关重要。特别是对于从现实世界系统自动生成的模型,由于变量顺序错误,族模型甚至可能无法构建。在本文中,我们描述了一种称为迭代变量重新排序的技术,它可以构建大规模的族模型。我们通过一个具有冗余机制的飞机速度控制系统来证明我们的方法的可行性,该系统以概率模型检查器 P RISM 的输入语言建模。我们表明,标准重新排序和动态重新排序技术分别由于内存和时间限制而无法构建系列模型,而新的迭代方法则成功生成了符号系列模型。
然而,在复杂系统开发背景下并不存在同样的成熟度,人们只能找到一些对敏捷系统工程的粗略且相当新的引用。将敏捷框架扩展到系统开发环境的首次尝试似乎可以追溯到 2012 年底,当时 IBM 研究员 Hazel Woodcock 提议重新审视系统工程的敏捷宣言(见 [76])。在这一开创性举措的指导下,国际系统工程理事会 (INCOSE) 的一个工作组于 2014 年开始研究敏捷系统工程(见 [38]),并定期发布有关这一主题的内容,尤其是 BP Douglass 于 2015 年底出版的第一本教科书(见 [28])。最后,还要指出的是,SAFe 团队的一次相当近期的首次尝试——据我们所知可以追溯到 2017 年 10 月——提出了基于模型的系统工程敏捷框架的草图。然而,最后一个建议被简化为非常少的想法,根本没有详细内容,而且显然不是很有效,也没有得到实际系统开发实验回报的支持(参见[58])。