1。通过基于矢量采样的计划,微秒中的动作。Wil Thomason *,Zachary Kingston ∗和Lydia E. Kavraki。ICRA 2024, *表示同等的贡献。2。随机隐式神经签名的距离功能,用于在感知不确定性下安全运动计划。Carlos Quintero-Peña,Wil Thomason,Zachary Kingston和Lydia E. Kavraki。ICRA 2024。3。通过负担得起的抽象技能的动态基础加速了长马计划。Khen Elemelech,Zachary Kingston,Wil Thomason,Moshe Y. Vardi和Lydia E. Kavraki。 ICRA 2024。 4。 对象通过模拟衍生的可行动作重新配置对象。 Yiyuan Lee,Wil Thomason,Zachary Kingston和Lydia E. Kavraki。 ICRA 2023。 5。 一种基于统一的采样方法,用于集成任务和运动计划。 Wil Thomason和Ross Knepper。 ISRR2019。 6。 社会动量:在动态多机构环境中可清晰导航的框架。 Christoforos Mavrogiannis,Wil Thomason,Ross Knepper。 HRI2018。 7。 零射门学习,以识别陌生的手势识别。 Wil Thomason和Ross Knepper。 ISER2016。Khen Elemelech,Zachary Kingston,Wil Thomason,Moshe Y. Vardi和Lydia E. Kavraki。ICRA 2024。4。对象通过模拟衍生的可行动作重新配置对象。Yiyuan Lee,Wil Thomason,Zachary Kingston和Lydia E. Kavraki。 ICRA 2023。 5。 一种基于统一的采样方法,用于集成任务和运动计划。 Wil Thomason和Ross Knepper。 ISRR2019。 6。 社会动量:在动态多机构环境中可清晰导航的框架。 Christoforos Mavrogiannis,Wil Thomason,Ross Knepper。 HRI2018。 7。 零射门学习,以识别陌生的手势识别。 Wil Thomason和Ross Knepper。 ISER2016。Yiyuan Lee,Wil Thomason,Zachary Kingston和Lydia E. Kavraki。ICRA 2023。5。一种基于统一的采样方法,用于集成任务和运动计划。Wil Thomason和Ross Knepper。 ISRR2019。 6。 社会动量:在动态多机构环境中可清晰导航的框架。 Christoforos Mavrogiannis,Wil Thomason,Ross Knepper。 HRI2018。 7。 零射门学习,以识别陌生的手势识别。 Wil Thomason和Ross Knepper。 ISER2016。Wil Thomason和Ross Knepper。ISRR2019。6。社会动量:在动态多机构环境中可清晰导航的框架。Christoforos Mavrogiannis,Wil Thomason,Ross Knepper。HRI2018。7。零射门学习,以识别陌生的手势识别。Wil Thomason和Ross Knepper。 ISER2016。Wil Thomason和Ross Knepper。ISER2016。ISER2016。
实验物理学主席 - 激光物理学,路德维希 - 马克西利安人 - 苏尼氏穆尼钦,巴伐利亚州85748,德国B型物理学实验室,麦克斯·普朗克量子学院,麦克斯·普朗克量子学院 Medicine, Division of Endocrinology and Diabetology, Medical University, Styria 8010, Austria e Institute of Epidemiology, Helmholtz Zentrum München, Bavaria 85764, Germany f Chair of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Bavaria 81377,德国 *应向其通信:电子邮件:tarek.eissa@mpq.mpg.de(T.E.); mihaela.zigman@mpq.mpg.de(m.j.)编辑者:lydia kavraki
1。J. Ho,A。Jain和P. Abbeel。 剥离扩散概率模型。 2020-12- doi:10.48550/arxiv.2006.11239 2。 A. Nichol和P. Dhariwal。 改进了扩散概率模型。 2021-02-18。 doi:10.48550/arxiv.2102.09672 3。 Jänner,M.,Du,Y.,Tenenbaum,J. B.和Levine,S。(2022)。 计划扩散,以进行柔性链球合成。 Arxiv(康奈尔大学)。 doi:10.48550/arxiv.2205.09991 4。 Carvalho,J。F.,Le,A。T.,Baierl,M.,Koert,D。,&Peters,J。 (2023)。 运动计划扩散:通过扩散模型对机器人运动的学习和计划。 Arxiv(康奈尔大学)。 doi:10.48550/arxiv.2308.01557 5。 S. M. Lavalle,计划算法,2006年,剑桥出版社6。 Mark Moll,Ioan A. ucan,Lydia E. Kavraki,基准运动计划算法:一种可扩展的分析和可视化基础架构,IEEE Robotics&Automation Magazine,22(3):96-102:96-102,2015年9月。J. Ho,A。Jain和P. Abbeel。剥离扩散概率模型。2020-12- doi:10.48550/arxiv.2006.11239 2。A. Nichol和P. Dhariwal。改进了扩散概率模型。2021-02-18。 doi:10.48550/arxiv.2102.09672 3。Jänner,M.,Du,Y.,Tenenbaum,J. B.和Levine,S。(2022)。 计划扩散,以进行柔性链球合成。 Arxiv(康奈尔大学)。 doi:10.48550/arxiv.2205.09991 4。 Carvalho,J。F.,Le,A。T.,Baierl,M.,Koert,D。,&Peters,J。 (2023)。 运动计划扩散:通过扩散模型对机器人运动的学习和计划。 Arxiv(康奈尔大学)。 doi:10.48550/arxiv.2308.01557 5。 S. M. Lavalle,计划算法,2006年,剑桥出版社6。 Mark Moll,Ioan A. ucan,Lydia E. Kavraki,基准运动计划算法:一种可扩展的分析和可视化基础架构,IEEE Robotics&Automation Magazine,22(3):96-102:96-102,2015年9月。Jänner,M.,Du,Y.,Tenenbaum,J.B.和Levine,S。(2022)。计划扩散,以进行柔性链球合成。Arxiv(康奈尔大学)。doi:10.48550/arxiv.2205.09991 4。Carvalho,J。F.,Le,A。T.,Baierl,M.,Koert,D。,&Peters,J。(2023)。运动计划扩散:通过扩散模型对机器人运动的学习和计划。Arxiv(康奈尔大学)。doi:10.48550/arxiv.2308.01557 5。S. M. Lavalle,计划算法,2006年,剑桥出版社6。Mark Moll,Ioan A. ucan,Lydia E. Kavraki,基准运动计划算法:一种可扩展的分析和可视化基础架构,IEEE Robotics&Automation Magazine,22(3):96-102:96-102,2015年9月。
•自动移动机器人简介。Roland Siegwart和Illah R. Nourbakhsh,麻省理工学院出版社,2004年。•Howie Choset,Kevin Lynch,Seth Hutchinson,George Kantor Wolfram Burgard,Lydia Kavraki和Sebastian Thrun的机器人运动原理,理论算法和实施原理。b。参考书:•机器人运动计划,Jean-Claude Latombe,Kluwer学术出版商,1991年。•概率机器人塞巴斯蒂安·特伦(Sebastian Thrun)。•计划算法,史蒂文(Steven),M,拉瓦勒(Lavalle)。•机器人运动计划Jean Claude Latombe。•移动机器人技术的计算原理,Gregory Dudek和Michael Jenkin。•讲师也可以使用讲义和研究文章。c。目的:本课程侧重于运动计划,感知和推理的概念,这是移动自动驾驶汽车在跨越土地,海洋和空气的动态,非结构化的环境中智能操作所需的。在本课程中,学生将学习如何在非结构化环境中计划机器人的运动,并使用概率方法,这将使他们在不确定性的情况下自我定位并理解周围环境。这些方法将在模拟平台上实现,以关闭透明度循环,以在复杂领域的稳健交付,这些循环在复杂的字段中进行了强大的交付,这些循环通常不是为了容纳机器人而设计的。还将讨论智能机器人系统的案例研究。d。课程结果:完成该模块后,学生将能够:•了解各种运动计划算法并在各种环境中实施。•了解使用统计建模技术(例如高斯过程)的使用,以允许机器人解释传感器数据并理解其周围环境。•了解概率方法如何解决由于现实世界中非确定性而固有的不确定性。•能够适应并应用机器人概念来设计和开发针对不同应用领域的实用机器人解决方案。•了解如何使用Python语言和机器人中间件(例如ROS)在简单的移动机器人上实现概率方法。
2009年的计算结构生物信息学研讨会11月1日,华盛顿特区http://www.cs.nmsu.edu.edu/~dsi/~dsi/~dsi/~dse/bioworkshop09该节目8-8:15 AM海报设置8:15 - 15-15-15-10am seess 1 am 1 am 1 am seccort 1 am everal:ableviciary kepress/ableviciary Room,ableviciary Room,phromist y 8月8日,8点; 1。“具有稀疏精确距离数据的蛋白质结构测定的有效的几何堆积算法” Robert Davis,Claus Ernst和Di Wu 2。“追踪蛋白质的构象变化” Nurit Haspel,Mark Moll,Matthew Baker,Wah Chiu和Lydia Kavraki 3。“使用序列曲线中心的GAMC方法对蛋白质长距离接触的预测” Peng Chen和Jinyan li 4。“用于蛋白质波动动力学和构象的通用弹簧张量模型变化” tu-liang lin和guang歌曲5。“一种用于寻找蛋白质分子构象的人造骨架” Carlile Lavor,Antonio Mucherino,Leo Liberti和Nelson Maculan 10:00-10:00-10:15 AM咖啡休息10:15-115-115-12:15 PM Sessight 2 pm Sessight 2 pm sessect 2 pm,每位演讲者:18分钟 + 2 -Minute Talks + 2 Minte “ Sidechain各向异性对残留接触确定的影响” Weitao Sun和Jing He 7。 “蛋白质蛋白质相互作用的计算测试” Ataur Katebi,Andrzej Kloczkowski和Robert Jernigan 8。 “嗜热和嗜嗜蛋白的歧视” Todd Taylor9。 “基于序列的B细胞表位通过使用抗体 - 抗原结构复合物中的关联” Liang Zhao和Jinyan li10。 “匹配观察到的α螺旋长度与预测的二级结构” Brian Cloteaux和Nadezhda Serova11。“ Sidechain各向异性对残留接触确定的影响” Weitao Sun和Jing He 7。“蛋白质蛋白质相互作用的计算测试” Ataur Katebi,Andrzej Kloczkowski和Robert Jernigan 8。“嗜热和嗜嗜蛋白的歧视” Todd Taylor9。“基于序列的B细胞表位通过使用抗体 - 抗原结构复合物中的关联” Liang Zhao和Jinyan li10。“匹配观察到的α螺旋长度与预测的二级结构” Brian Cloteaux和Nadezhda Serova11。“与核小体DNA相关的周期性如何反映其内在曲率?”Murlidharan Nair 12:15-1:15pm午餐休息时间1:15-2:15pm海报会议2:15-3:55 PM会议3(内阁/司法室,每个20分钟,每个)12。“使用质谱数据的多项式二硫键确定” William Murad,Rahul Singh和Ten-Yang Yen13。“使用迭代TM得分的蛋白质结构的密度分类” David Hoksza和Jakub Galgonek 14。“用于蛋白质表面对齐的全球优化算法” Paola Bertolazzi,Concettina Guerra和Giampaolo Liuzzi 15。“ FCC-HP蛋白模型中折叠的上限” Abu Dayem Ullah和Kathleen Steinhofel 16。“氨基酸相互作用网络中的节点分布” Omar Gaci和Stefan Balev 3:55 PM关闭言论