图 2. 不同炎症严重程度的 UC 患者组织活检中转运蛋白的表达,以内镜 Mayo 评分表示(Mayo 1:轻度炎症,Mayo 2:中度炎症,Mayo 3:重度炎症)。(A)MRP4、(B)P-gp、(C)MCT1 和(D)OATP2B1。单个数据点代表每位患者的直肠和乙状结肠活检平均值;实线代表所有患者的中位数。低于 LOD 或 LOQ 的表达水平被分配一个任意值(分别为 LOD/√2(虚线绿线 ---)或 LOQ/√2(虚线蓝线 ·-·),以允许进行统计检验。
目的:脑电图(EEG)可用于估计新生儿的生物脑时代。在月经年龄和脑年龄之间的差异,称为脑年龄差距,可能会导致成熟偏差。现有的大脑年龄EEG模型不太适合临床COT侧用途,用于估计新生儿的脑年龄间隙,因为它们依赖于相对较大的数据和预处理要求。方法:我们使用降低的数据要求培训了一种来自具有非神经开发的婴儿和幼儿发展(BSID)结果的早产新生儿的静止状态脑电图数据的深度学习模型。随后,我们在两个临床部位的两个独立数据集中测试了该模型。结果:在两个测试数据集中,仅使用单个通道的静息状态脑电图活动的20分钟,模型生成准确的年龄预测:平均绝对误差= 1.03周(p值= 0.0001)和0.98周(pValue = 0.0001)。在一个测试数据集中,在9个月的随访BSID结局中,严重异常结果组的平均新生儿脑年龄间隙显着大于正常结局组的平均脑年龄差异:平均脑年龄差距的差异差异= 0.50周(p-value = 0.04)。结论:这些发现表明,深度学习模型对来自两个临床部位的独立数据集进行了普遍性,并且模型的脑年龄间隙幅度在正常和严重的随访神经发育结果的新生儿之间有所不同。2024国际临床神经生理联合会。由Elsevier B.V.明显:新生儿大脑年龄间隙的幅度,仅使用单个通道的静息状态脑电图数据的20分钟来估算,可以编码临床神经发育价值的信息。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
将要求所有进入堪萨斯大学护理学院的个人,以确认他们可以符合以下技术标准,无论有没有住宿。在没有临床组件的课程或课程中,或不涉及直接客户护理,技术标准可能会由学生录取和进步委员会(SAPC)修改。接受后,但是在入学护理学院之前,所有计划中的学生都必须能够记录当前的认证/证据,以完成医疗保健提供者心肺复苏课程。这需要能够成功完成书面和实用测试以进行认证。此外,在有或没有住宿的情况下,所有学生,本科生和毕业生都必须满足以下能力和期望。
简介 鉴于对满足射频系统要求的需求日益增加,作为关键组件的循环器已成为研究的主题。传统循环器通常基于采用带状线或微带技术设计的 Y 型结形状。带状线循环器易于集成且损耗低。这种循环器拓扑结构可以通过同轴连接器连接,采用 Drop-in 技术实现或内置于表面贴装器件 (SMD)。尽管成本较高,但同轴循环器具有比其他产品更高的 EMC 屏蔽和功率处理能力。此外,Drop-in 设备处理的功率较少,并且没有 EMC 屏蔽。最后,SMD 循环器的功率处理能力低于同轴循环器,但 EMC 屏蔽比 Drop-in 更好。面对日益增长的小型化、集成化和降低成本的需求,LTCC(低温共烧陶瓷)技术是应对这些挑战的有希望的候选技术。LTCC 技术是一种通过多层结构封装集成电路的技术。它由堆叠胶带组成,可防止结点出现气隙,并降低高功率空间应用的多重击穿风险。在过去的几年中,许多已发表的研究都集中在 LTCC 循环器的设计上 [1]-[2]。然而,它们大多数都是理论上的,只有少数专注于工业用途 [3]。因此,Exens-Solutions 与 CNES、Thales TRT 和 IMT Atlantique 合作,提出了 LTCC 技术来开发用于保护有源天线的 K 波段循环器。该循环器由 Exens-Solutions 根据与 CNES 商定的规格设计。IMT Atlantique 负责循环器的制造过程。铁氧体和电介质材料带由 Thales TRT 开发。因此,本文分为四个部分。第一部分介绍 LTCC 循环器规格并详细介绍材料特性。第二部分描述了建立设计规则的试运行。第三部分讨论了 LTCC 循环器的设计步骤和模拟。制造步骤和测量结果在最后一节中报告。LTCC 环行器规格初步提出的拓扑结构采用带状线拓扑结构来设计封装在封装中的 LTCC 环行器。这种拓扑结构的优点是可以缩小环行器体积并避免金属路径受到任何损坏。如图 1 所示,在 LTCC 结构中添加了信号和接地通孔,以确保其与 SMD 表面的互连。
摘要:在本文中,提出了基于硅(gan-on-on-si)上基于氮化壳的KU波段主动雷达应用的微波整体整合电路(MMIC)高功率放大器(HPA)。设计基于三阶段的体系结构,并使用Ommic Foundry提供的D01GH技术实施。以及稳定性和热分析提供了有关最大化交付功率的体系结构定义和设计过程的详细信息。为了优化放大器性能,输出组合仪中包含了不对称性。实验结果表明,HPA达到39.5 dBM脉冲模式输出功率,峰值线性增益为23 dB,排水效率为27%,并且在16-19 GHz频率范围内具有良好的输入/输出匹配。芯片区域为5×3.5 mm 2,用于测量值安装在定制模块上。这些结果表明,基于GAN-on-SI的固态功率放大器(SSPA)可用于实现KU波段活动雷达。
技术转让和工业接口部 (TTID)、PPG 空间应用中心 (SAC)、ISRO、Ambawadi Vistar、艾哈迈达巴德 - 380 015 电子邮箱:ttid@sac.isro.gov.in 传真:079-26915817 https://www.sac.gov.in/SAC_Industry_Portal
摘要:旁道攻击是对现实世界中部署的密码系统的巨大威胁。针对旁道攻击的一种有效且可证明安全的对策是掩蔽。在本文中,我们详细研究了密钥封装机制 Saber 的高阶掩蔽技术。Saber 是美国国家标准技术研究所后量子标准化程序中基于格的最终候选者之一。我们对最近为 Saber 提出的不同掩蔽算法进行了详细分析,并提出了一种优化的高阶掩蔽 Saber 实现。与未掩蔽的 Saber 相比,我们针对一阶、二阶和三阶掩蔽 Saber 提出的技术分别具有 2.7 倍、5 倍和 7.7 倍的性能开销。我们表明,与另一种基于格子的最终方案 Kyber 相比,Saber 的性能随着掩码阶数的增加而下降得更少。我们还表明,高阶掩码 Saber 需要的随机字节比高阶掩码 Kyber 少。此外,我们将掩码实现调整为 uSaber,这是 Saber 的一个变体,专门设计用于实现高效的掩码实现。我们介绍了 uSaber 的第一个掩码实现,表明它在任何阶数上确实比掩码 Saber 至少高出 12%。我们在 ARM Cortex-M4 微控制器上提供了我们提出的所有掩码方案的优化实现。
1型糖尿病是一种自身免疫性疾病,其中胰岛中的ß细胞被破坏。而不是治疗明显的糖尿病,停止β细胞破坏的进展将为患有1型糖尿病的人提供更高的生活质量。1型糖尿病的主要驱动因素是胰岛特异性的常规T细胞。这些细胞必须逃避多种耐受性机制,以控制健康个体的激活。调节T细胞抑制破坏胰岛细胞的T细胞功能,在这种耐受性中起着关键作用。 试图扩大个人自身的调节性T细胞存在多种挑战,而使用天然调节T细胞的临床试验仅在调节疾病方面取得了适度的成功。 与Tom Yankee(Kumc)和Ryan Fischer(CMH)合作,Markiewicz Lab开发了一种新方法,并为从原发性的传统人类T细胞中设计了一种新方法。 Markiewicz Lab使用糖尿病研究所授予的资金来建立一个体外系统,以测试这种新方法产生的工程调节T细胞是否可以限制人类胰岛特异性T细胞的破坏。调节T细胞抑制破坏胰岛细胞的T细胞功能,在这种耐受性中起着关键作用。试图扩大个人自身的调节性T细胞存在多种挑战,而使用天然调节T细胞的临床试验仅在调节疾病方面取得了适度的成功。与Tom Yankee(Kumc)和Ryan Fischer(CMH)合作,Markiewicz Lab开发了一种新方法,并为从原发性的传统人类T细胞中设计了一种新方法。Markiewicz Lab使用糖尿病研究所授予的资金来建立一个体外系统,以测试这种新方法产生的工程调节T细胞是否可以限制人类胰岛特异性T细胞的破坏。