Loading...
机构名称:
¥ 1.0

目的:脑电图(EEG)可用于估计新生儿的生物脑时代。在月经年龄和脑年龄之间的差异,称为脑年龄差距,可能会导致成熟偏差。现有的大脑年龄EEG模型不太适合临床COT侧用途,用于估计新生儿的脑年龄间隙,因为它们依赖于相对较大的数据和预处理要求。方法:我们使用降低的数据要求培训了一种来自具有非神经开发的婴儿和幼儿发展(BSID)结果的早产新生儿的静止状态脑电图数据的深度学习模型。随后,我们在两个临床部位的两个独立数据集中测试了该模型。结果:在两个测试数据集中,仅使用单个通道的静息状态脑电图活动的20分钟,模型生成准确的年龄预测:平均绝对误差= 1.03周(p值= 0.0001)和0.98周(pValue = 0.0001)。在一个测试数据集中,在9个月的随访BSID结局中,严重异常结果组的平均新生儿脑年龄间隙显着大于正常结局组的平均脑年龄差异:平均脑年龄差距的差异差异= 0.50周(p-value = 0.04)。结论:这些发现表明,深度学习模型对来自两个临床部位的独立数据集进行了普遍性,并且模型的脑年龄间隙幅度在正常和严重的随访神经发育结果的新生儿之间有所不同。2024国际临床神经生理联合会。由Elsevier B.V.明显:新生儿大脑年龄间隙的幅度,仅使用单个通道的静息状态脑电图数据的20分钟来估算,可以编码临床神经发育价值的信息。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。

临床神经生理学-Lirias -Ku Leuven

临床神经生理学-Lirias -Ku LeuvenPDF文件第1页

临床神经生理学-Lirias -Ku LeuvenPDF文件第2页

临床神经生理学-Lirias -Ku LeuvenPDF文件第3页

临床神经生理学-Lirias -Ku LeuvenPDF文件第4页

临床神经生理学-Lirias -Ku LeuvenPDF文件第5页

相关文件推荐

2024 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2020 年
¥3.0
2022 年
¥1.0
2023 年
¥20.0