图 5 给出了所提 LSWD 算法和 SWD 算法在不同 迭代次数时的比特错误概率 (Bit Error Ratio, BER) 曲线,其中最大迭代次数分别取为 5 和 10 。 图 6 给出 了两种算法的译码性能与最大迭代次数的关系,其 中信噪比分别为 2.5 dB, 4.0 dB 。综合分析 图 5 和 图 6 的仿真结果,可以看出: (1) 所提算法和现有文献 的 SWD 算法的误码性能曲线都有明显的瀑布区。 (2) 当迭代次数相同时,所提算法的性能优于 SWD 算法。如,当译码迭代为 50 次、译码窗长度为 9 时,为达到 10 –6 BER ,所提算法所需的信噪比值 为 3.9 dB ,而目前常用的 SWD 算法则需要 4.2 dB , 所提算法约有 0.3 dB 的性能优势。 (3) 在译码性能 基本相同时,与 SWD 算法相比,所提算法可以明 显减少译码迭代次数。例如,当信噪比为 2.5 dB 时,为了获得 10 –3 的 BER ,所提算法和 SWD 算法所 需的迭代次数分别为 7 和 11 ;当信噪比为 4.0 dB 时,为了达到 10 –5 的 BER ,所提算法和 SWD 算法所 需的迭代次数分别为 12 和 20 ,此时所提算法的迭代
▶ RG Gallager,“低密度奇偶校验码”,IRE 信息理论汇刊,第 IT-8 卷,第 21-28 页,1962 年 1 月。 ▶ DJC MacKay 和 RM Neal,“基于非常稀疏矩阵的良好代码”,《密码学和编码》。第 5 届 IMA 大会,计算机科学讲义系列,C. Boyd 编辑,柏林:Springer,1995 年,第 1025 期,第 100-111 页。 ▶ C. Sae-Young、G. Forney、T. Richardson 和 R. Urbanke,“关于在香农极限 0.0045 dB 范围内设计低密度奇偶校验码”,IEEE Commun. Lett.,第 5 卷,第 2 期,第 58-60 页,2001 年 2 月。