最近,Renes 提出了一种称为量子消息信念传播 (BPQM) 的量子算法,用于解码使用具有树形 Tanner 图的二进制线性码编码的经典数据,该数据通过纯状态 CQ 信道 [ 1 ](即具有经典输入和纯状态量子输出的信道)传输。该算法为基于经典信念传播算法的解码提供了真正的量子对应物,当与 LDPC 或 Turbo 码结合使用时,该算法在经典编码理论中取得了广泛成功。最近,Rengaswamy 等人 [ 2 ] 观察到 BPQM 在小示例代码上实现了最佳解码器,因为它实现了区分具有最高可实现概率的输入码字集的量子输出状态的最佳测量。在这里,我们通过以下贡献显著扩展了对 BPQM 算法的理解、形式化和适用性。首先,我们通过分析证明 BPQM 可以对任何具有树形 Tanner 图的二进制线性码实现最佳解码。我们还首次对 BPQM 算法进行了完整、无歧义的正式描述。在此过程中,我们发现了原始算法和后续工作中忽略的一个关键缺陷,这意味着量子电路实现在代码维度上将呈指数级增长。尽管 BPQM 传递量子消息,但算法所需的其他信息是全局处理的。我们通过制定一个真正的消息传递算法来解决这个问题,该算法近似于 BPQM,量子电路复杂度为 O p poly n, polylog 1
摘要。本文回顾了经典密码学中常见的攻击以及后量子时代针对 CRYSTALS-Kyber 的可能攻击。Kyber 是一种最近标准化的后量子密码学方案,依赖于格问题的难度。尽管它已经通过了美国国家标准与技术研究所 (NIST) 的严格测试,但最近有研究成功对 Kyber 进行了攻击,同时展示了它们在受控设置之外的适用性。本文讨论的攻击包括常见攻击、旁道攻击、SCA 辅助 CCA 和故障注入。在常见攻击部分,对对称原语的攻击、多目标攻击和利用解密失败的攻击都可以被视为不可行,而最近对模块 LWE 攻击的数据质疑了 Kyber 的安全级别。在旁道攻击部分,由于 Kyber 的恒定时间特性,时序攻击被证明是无用的,但 SASCA 攻击仍然可行,尽管很容易防御,缺点很少。然而,针对消息编码的攻击和使用深度学习的攻击都被证明是有效的,即使使用高阶掩码也是如此。LDPC 也被提议作为一种新的攻击框架,证明了其强大且具有发展空间。在 SCA 辅助 CCA 部分,EM 攻击和 CPA 攻击也都显示出潜力,但仍然难以防御。在故障注入部分,轮盘赌和容错密钥恢复都是最近提出的,数据证明了它们的有效性和防御难度。本文旨在为未来的研究人员提供洞察力,让他们了解应该关注哪些领域来加强当前和未来的密码系统。
NASA 的跟踪和数据中继卫星系统 (TDRSS) 地面终端将于 2015 年更换。自 1994 年上次大规模整修以来,现有终端已进行过多次小规模升级和改造。地面终端与七颗运行中的地球同步通信中继卫星一起,为 20 多个客户航天器提供支持,包括 Terra、哈勃太空望远镜、国际空间站等。终端更换工作称为空间网络地面段支持 (SGSS),它将使地面终端通信基础设施现代化,并为客户提供新功能。本文介绍了新的架构、一些重大技术升级和运营概念,这些概念将使 TDRSS 能够以更低的成本为更多客户提供更多服务。SGSS 将提供灵活、可扩展、可升级和可持续的地面段,它将:1) 维护现有的空间网络 (SN) 功能和接口;2) 适应新客户和功能,包括更高的数据速率支持和额外的调制和编码方案;3) 减少维护地面终端所需的工作量;4) 在不中断服务的情况下将运营从现有系统过渡到 SGSS;5) 实现 99.99% 的客户服务运营可用性。SGSS 将通过以下方式实现这一目标:1) 使用最先进的技术实施架构,实现低影响的增量升级;2) 简化增加地面和空间资产的扩展过程;3) 在很大程度上纳入商用现货 (COTS) 产品;4) 最大限度地提高设备通用性。一些新的和增强的 SGSS 功能包括:1) 能够轻松添加新的发送和接收波形; 2) 早期信号数字化,实现无损信号分发;3) 高速数字分组交换;4) 新型编码方案,包括低密度奇偶校验 (LDPC) 和 Turbo 乘积码 (TPC);5) Ka 波段单向跟踪服务;6) 指令数据速率提高到 50Mbps,遥测数据速率提高到 1.2 Gbps。
I. 引言随着无线网络通过 5G 不断发展,通过使用毫米波频段、大规模 MIMO 和密集小区来提高频谱密度,网络设计人员正在展望 6G 发展路线图,预计社会将更加数据驱动,无线脑机接口、扩展现实和互联机器人将推动 6G 网络处理比 5G 快 10 到 1,000 倍的数据速率 [1]。为了提高频谱效率,设计人员将考虑实施超大规模 MIMO 阵列、创新的空中接口复用技术、更强大的前向纠错编码等技术,甚至在更高载波频率的更宽带宽中部署更高密度的网络。随着频谱效率的提高,6G 系统设计人员将努力提高关键性能指标 (KPI),例如终端和基站的延迟、可靠性和能源效率,同时也会尽量不牺牲一个 KPI 来实现另一个 KPI。 6G 算法的实施可以优化数据吞吐量、频谱效率、用户密度、可靠性和延迟,并在更宽的带宽下运行,这将导致比当前 5G 系统更多的计算量。在基站和蜂窝基础设施中,5G RF 调制解调器信号处理基于经典计算概念,这些概念通常在 ASIC、FPGA 和 GPU/CPU 结构中实现。然而,经典计算性能的改进并没有像过去几年那样呈指数级增长,而是由于晶体管达到原子极限而趋于稳定 [2]。由于高效快速计算结构的设计现在与无线通信竞争,成为许多高容量无线通信系统面临的最重大挑战,因此硅片能否实现实现 6G KPI 所需的高频谱性能、低延迟和高可靠性优化算法值得怀疑。随着 6G 路线图的发展,量子计算是一种潜在的宝贵工具,可以解决未来性能、延迟和可靠性之间的权衡。如果量子计算能够为目前限制可实现网络吞吐量的复杂优化问题提供最佳算法,那么频谱效率将受益匪浅。能够进行量子信息处理的众多硬件平台可以与其他可扩展技术(如毫米波和小型蜂窝)相结合,进一步提高频谱效率。由于量子力学的线性,量子计算从根本上受限于可逆操作,这些操作不会散发热量,除了计算的初始化和读出阶段。虽然嘈杂的量子计算具有不可逆性元素,但从长远来看,量子计算原则上可以达到任意低的功耗,而如果以传统方式执行,这些计算将耗电。在过去几年中,由于纳米技术和工程技术的进步,现实世界的量子计算机已经可以商业化使用。对于无线网络,最近的研究首先利用了量子退火器,这是一种模拟量子计算处理器,并展示了集中式无线接入网络(C-RAN)中基于量子的多输入多输出(MIMO)检测器 [3] 和基于量子的低密度奇偶校验(LDPC)错误控制解码 [4] 的良好结果,为如何使用机器和基线性能指标提供了指导。在无线网络中,存在代表性的优化问题,包括但不限于先前研究的应用,这些问题受到众所周知的吞吐量和复杂性之间的传统权衡,其中最佳求解器是已知的,但考虑到可用的硬件和处理时间限制,实际实施起来非常困难。我们期望克服