摘要:iii-v半导体发光二极管(LED)是证明电致发冷却的有前途的候选人。但是,异常高的内部量子效率设计对于实现这一目标至关重要。可以防止基于GAAS的设备中统一内部量子效率的重要损失机制是周长侧壁的非辐射表面重组。为了解决此问题,提出了非常规的LED设计,其中从中央电流注入区到设备周边的距离延长了,同时保持恒定的前触点网格大小。这种方法有效地将周长移动到电流密度10 1-10 2 A/cm 2的电流密度以外的横向扩散。在P - I-N GAAS/INGAP双重杂结LED中,用不同尺寸和周长扩展制造的LED,通过将外周向接触距离从250μm扩展到250μm的前触点尺寸,可实现19%的外部量子效率。利用内部开发的光子动力学模型,估计内部量子效率的相对相对增加为5%。这些结果归因于由于较低的周边面积(p/a)比,周长重组的重组显着降低。但是,与通过增加LED的前触点网格大小来降低P/A比相反,目前的方法可以改进这些改进,而不会影响前触点网格下显微镜活性LED所需的最大电流密度。这些发现有助于在LED中进行电致发冷却的进步,并可能在其他专用的半导体设备中有用,在这些专用的半导体设备中,在外围重组是限制的。关键字:电致发冷却(ELC),微型LED(发光二极管),III-V半导体,电流扩散,周边重组,表面钝化
量子点发光二极管(QD-LED)具有稳定的高官方,对于下一代显示至关重要。然而,无法控制的衰老,在储存期间效率最初增加(正衰老),但在延长的衰老(负衰老)(负衰老)时完全损失,这会阻碍进一步的设备开发。发现,基于纳米晶(NC)的电子传输层(ETL)的化学变化会导致正衰老,它们的结构漂移和形态导致瞬时改善的电荷注入平衡。使用放牧的小角度X射线散射,发现Znmgo NCS在衰老过程中进行了量身定量的成熟,改善了尺寸均匀性并创造了更平滑的能量景观。仅电子设备的测量结果显示,陷阱状态下降了7倍,表明Znmgo的表面钝化增强。这些见解,结合了ZnMGO表面结合的密度功能理论计算,激发了具有Al 2 O 3的原子层沉积(ALD)策略,以永久抑制表面陷阱并抑制NC的生长,从而有效地消除了老化诱导的效果损失。这种ALD工程的Znmgo ETL使得在30批LED中可重复可重复可重复的外部量子效应(EQE)为17%,在4500 cd m-2的初始亮度为4500 CD M-2的LED中,t 60 h 60 h,代表EQE的增长1.6倍,并且在运行式稳定性的稳定性上的提高了1.6倍。
总部位于中国的研究者报告说,硅(SI)上的高光泽绿色依赖二氮(INGAN)发光二极管(LED)[Haifeng Wu等人,Light:Science&Applications,V13,V13,P284,2024]。将外延材料以1080x780格式的7.5μm螺距下的正常大小的LED和5µm像素的阵列。30x30阵列在1000a/cm 2电流注入时达到1.2x10 7 cd/m 2(nit)的亮度,声称是此类微型LED的最高报告。来自匈牙利大学的研究团队,Innovision Technology(Suzhou)Co Ltd,Lattice Power(Jiangxi)Corp,中部南大学,北京数字光学设备IC Design Co Ltd和Hunan Normal University,认为Spectrum的绿色部分对于“准确的色彩再现和整体图像质量”特别重要。微主导的显示被视为在虚拟/增强真实环境中具有即时应用的关键下一代视觉接口。研究人员使用金属有机化学蒸气
配体可以充当两个采用n ˆ o - 和o o o - 螯合模式的虹膜中心的辅助配体。为了调整这种双核复合物中激发态的能量,2-(2,4-二苯基)吡啶(HDFPPY)和2-苯基苯甲苯二唑(HPBTZ)(HPBTZ)用作环的配体,以分别与蓝色 - 或橙色的Homo-emissive yy-yy-emissive-yy-emissive yy-yy-emissive-yyy-yyy-yyy-yyy-yyy-yyys and yyys一起使用[ir(dfppy)2] 2(pico)和[ir(pbtz)2] 2(pico)。此外,在第一次,也获得了短桥的杂粒元素化的双核配合物(通过和yb,带有公式[ir(dfppy)2](pico)[ir(pbtz)2]和[ir(pbtz)2]和[ir(pbtz)2] 2](pico)2](pico)[ir(pico)[ir(dfpppy)2])。取决于在小脚桥桥的两侧的环数配体的相互排列,获得了两对非映异构体的夫妻并有效地分离,如NMR和DFT研究所证明的那样。报道的双核复合物具有高度发光量子产率(PLQY)高达67%的高度发射,与其单核类似物(B和Y)相当。由于其氧化还原过程的完全可逆性,所有复合物也在溶液处理的有机发光二极管中进行了测试,从而提供了基于异核 - 核环含量硫化锂(III)配合物的独特OLED。
MicroLED 代表着一个令人兴奋的机会,有可能降低超大面积显示器以及一些小面积显示器应用的成本。高能量紫外激光器是降低生产成本、提高产量和改善质量的关键。Coherent 提供多种解决方案,从单一激光源、光学系统到集成系统,用于 MicroLED 制造中的三个重要过程:激光剥离 (LLO)、激光诱导正向转移 (LIFT) 和修复/修整。Coherent 还涵盖了整个 MicroLED 生产链的更多工艺步骤,从超短脉冲激光器的激光切割到二极管激光器的激光辅助键合 (LAB)。
目标:评估单峰和多波LED固化的通用粘合剂的影响,对人牙浆干细胞(HDPSC)的代谢活性和细胞因子释放的影响。另外,分析用不同LED固化的粘合剂的转化程度(DC)。方法:使用三种通用粘合剂制备圆盘(直径为5 mm,厚1毫米):单键Uni Versal(SBU,3 M ESPE),Optibond Universal(OBU,Kerr)和Zipbond Universal(ZBU,SDI)。使用单峰(DeepCure,3 M ESPE)或PolyWave轻射二极管(LED)固化单元(Valo Grand,Ultrapent)将这些圆盘固化40 s。24小时后,将样品放在24孔培养板中,每个培养板含有1 ml培养基24小时。将HDPSC(1.8×10 4)接种在96孔板中,并允许生长24小时。随后,将细胞暴露于提取物(含有粘合剂碟片的培养基)的提取物(培养基)中,再加上24小时。未暴露于提取物的细胞用作对照组。使用MTT分析和通过Magpix评估的细胞因子释放评估线粒体代谢。使用FTIR分析粘合剂的转化程度(n = 5)。通过方差分析的双向和Tukey的测试对结果进行了分析。结果:OBU和ZBU洗脱液在线粒体代谢上导致统计学上显着降低,而不论所用的LED如何,表明它们的细胞毒性。相比之下,SBU并未显着影响MTT结果,类似于对照组。与ZBU相关的细胞因子IL-1,IL-6,IL-10和TNF-α的释放较高。SBU增加了IL-8的释放。OBU不影响细胞因子释放。SBU呈现较高的直流,而OBU和ZBU的DC相似,低于SBU。的意义:总之,通用粘合剂对HDPSC表现出毒性,但毒性程度因粘合剂而异。ZBU与HDPSCS的细胞因子释放量增加有关,尤其是促炎性介质。不同的LED不影响评估粘合剂的细胞毒性。
可以使用自下而上的工艺完全避开蚀刻损伤的关注点。选择性面积生长(SAG)的过程将vias涂到掩模层上的基板上,然后将图案化的底物加载以进行生长。调整生长条件,使外观仅发生在定义的开口内。这会导致纳米(微)结构的生长,其尺寸和形状与底物5,6时所定义的尺寸和形状完全匹配。此外,这些纳米结构不需要暴露于任何干蚀刻过程以定义装置台面,从而防止形成与该过程相关的表面缺陷。这些优势对于任何(子)微米级设备的高效效率是必要的。纳米结构也可以在非本地基材上生长,有可能打开更多新应用7。此外,
摘要。通过将合金组成(x)从0更改为0到1,可以将Al X GA 1 -X N合金的能量带隙从〜3.4到6.1 eV进行系统调整,并且直接带隙性质在整个合金组合范围内保持在整个合金范围内,这些合金范围使Algan合金合适的材料可将光的光发射二号(LED)覆盖21 uptiover(uld)覆盖21 uptiols(U 21)。对于深紫外区(λ<300 nm)中的LED,需要高于50%的Al含量的Al含Algan合金。深紫外线LED在广泛的领域具有应用,包括显示,消毒,医疗,感应和通信。随着材料生长和电导率的最新进展,富含Al的Algan合金已成为独特的宽带间隙材料,用于开发深紫外线LED。在这篇评论文章中,富含艾尔根合金的进展如何在材料的增长和电导率方面取得了审查,导致其出现作为深色紫外线材料的出现。还将讨论深紫外线LED的挑战和前景,以提高设备的性能。
总部位于美国的3M公司在行业,工人安全,美国医疗保健和消费品领域运营。该公司生产各种产品(实际上是60,000多种产品),包括胶粘剂,磨料,层压板,被动防火,保护膜,牙齿和正畸产品,电气和电子连接和绝缘材料以及光学膜。