当时,IBU-tec 代表客户成功进行了 LFP 试验,随后委托生产了多达 4,000 吨的阴极活性材料。从那时起,我们回转窑生产的材料已在全球众多应用中证明了其品质。
•协作旨在提高LFP阴极材料的性能•通过使用本地原材料来减少电池的碳足迹•专注于Cologne/Weimar的欧洲价值链,2024年1月23日 - 专用化学品公司Lanxess和电池材料制造商IBU -TEC高级材料已进入电池台上的研究合作。两家德国公司的目标是开发创新的氧化铁,以生产LFP电池的阴极材料,从而提高该电池类型的性能。公司旨在优化LFP电池的电化学性能,例如能量密度,充电速度和充电周期数。越来越多的汽车制造商越来越依赖于其电子车辆的LFP(锂/铁/磷酸盐)电池,尤其是对于体积模型。与NMC(镍/锰/钴氧化物)和NCA(镍/钴/氧化铝)细胞化学系统相比,LFP技术可提供高达50%的成本优势,并承诺安全使用,因为该系统使电池几乎不可能点燃。加强欧洲价值链预计欧洲对LFP的需求预计每年将增长20%,直到2030年。到目前为止,这一需求几乎完全由非欧洲供应商满足。随着他们的发展,两家公司都旨在为在欧洲LFP电池市场中建立独立,健壮的价值链做出贡献,同时减少电池的碳足迹。
在本演讲中提到的LFP范围研究已进行了评估项目的技术和财务可行性。在Avenira能够提供经济发展案件的任何保证之前,需要进一步的评估工作,包括可行性研究(“ BFS”)。Avenira得出结论,有合理的理由可以提供本演讲中包含的前瞻性陈述,并且有合理的依据可以期望它能够为LFP项目的开发提供资金。投资者不应仅根据LFP范围研究的结果做出任何投资决策。虽然Avenira认为所有物质假设是基于合理的理由,但无法确定它们将被证明是正确的,也不能实现这项LFP范围范围研究所指示的结果范围。
lfp和NMC化学家目前是锂离子家族中最相关的,并且具有更高的前景技术。本文分析了由日历和骑自行车老化引起的锂离子电池中容量衰减的建模过程。考虑到用于定义模型的主要参数的变化,开发了对LFP和NMC有效的在线老化估计模型:温度,充电状态以及电荷和排放率。通过将两种化学的性能与制造商和以前的衰老模型提供的数据进行比较,从理论上的角度来验证了该模型。提议的电池老化模型达到3%的最大相对误差,这取决于电池化学和指定的工作条件。开发了有关电池终止寿命的模型准确性的进一步分析。此外,从实验性的角度验证了模型性能,并在实验室中测试了NMC电池,达到低于5%的误差。此外,提出了一种参数化衰老模型的方法,以促进该模型在特定的电池中的应用。
如果需要移动或维修电池系统,则必须切开电源,并且电池完全关闭。禁止将电池与不同类型的电池连接起来。禁止将电池用故障或不兼容的逆变器工作。禁止拆卸电池。在发生火灾的情况下,只能使用干灭火器。禁止液体灭火器。请不要打开,维修或拆卸电池,除了Deye或Deye授权。我们不承担任何后果或相关的责任,因为违反了安全操作或违反了设计,生产和设备安全标准。
虽然电动汽车有望减少道路上的碳排放,但从整体生命周期的角度来看,在其电池的生产和报废管理中需要进一步考虑环境因素。最近,循环报废思维得到了推广,其策略是通过二次生命来延长退役电池的使用寿命,因为寿命延长通常在生命周期评估中受到青睐。然而,建议针对不同的锂离子化学成分,将这些策略标准化,以实现回收或重新利用的路径。这种分类主要涉及含钴阴极锂离子电池,即 NMC,它是交通运输的主导技术,以及替代技术,即 LFP,由于供应链中钴的稀缺,最近在汽车领域受到了更多的关注。这种技术转变将影响它们退役时的报废管理。在这种安排下,重新利用此类电池化学品的经济优先性需要量化。本研究评估了重新利用退役锂离子 NMC 和 LFP 电池用于电力系统中的能源套利应用的财务回报。在爱尔兰和昆士兰的市场中研究了重新利用的可行性。结果表明,与 NMC 相比,退役的锂离子 LFP 对价格波动的反应更频繁,且财务回报率更高;因此,它们具有更高的重新利用潜力,从循环经济的角度来看,将它们更多地融入新汽车中是有希望的。对于不同规模的系统和电池持续时间,已经观察到不同的回报率。与半小时和两小时持续时间的小型系统相比,中型系统中的一小时电池的经济效益更为显著。敏感性分析表明,在昆士兰这样的竞争性电力市场中,即使为重新利用的系统花费与新系统相同的资本成本,也只会产生边际财务回报,而地方当局对循环经济商业模式的进一步激励将有效地使此类投资变得可行。
这项研究建立了一种新的方法,可以研究加速的衰老测试是否可以在短时间内准确地对现实的细胞衰老进行建模,同时还可以维持所涉及的衰老机制的一致性。作为效率和一致机制之间的权衡,加速衰老的应用需要仔细选择应力因素,以确定操作范围和与衰老相关的应激因素的重要性。基于为43个月的日历老化测试和10个月循环老化测试设计的三个级别的主要应力因素,这项工作旨在应力排名,并指示用于商业LFP/C电池的合适的操作间隔,并采用了两种最受欢迎的电池寿命分布,即电池,即logormormal and weibull。锂离子电池的统计分布是通过非线性混合效应(NLME)模型的排放能力损失来实现的。结果证明,对数正态是首选模型,并且随着更深的衰老,尤其是在日历老化中,右链的Weibull变得更加明显。得出了由一致加速因子引导的分布参数的进化定律。基于寿命样本的NLME模型的似然比参数bootstrap方法始终产生,以高于47.5℃的温度来测试条件,而循环衰老的平均收费(SOC)高于72.5%的平均电荷(SOC)会导致不同的生活行为。相比之下,SOC水平和较高温度的组合不会导致日历老化机制的变化。温度是最显着的应力,其次是温度耦合的循环深度和SOC水平。此方法可以提供参考,以制定合理的测试计划,以检测电池的性能以更准确地预测其生活。
“闭环分配过程适用于闭环产品系统。它也适用于开环产品系统,在回收材料的固有特性中没有发生变化。在这种情况下,避免了分配的需求,因为二级材料的使用置换了维珍(主要)材料的使用。”