摘要 石榴石型固态电解质 (SSE) 因其高离子电导率、宽电化学窗口和显著的 (电) 化学稳定性而成为全固态锂 (Li) 电池的首选。然而,正极/石榴石界面差和正极负载普遍较低等棘手问题阻碍了它们的实际应用。在此,我们展示了通过放电等离子烧结构建增强正极/石榴石界面的方法,通过将 Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 (LLZTO) 电解质粉末和 LiCoO 2 /LLZTO 复合正极粉末直接共烧结成致密的双层,并以 5 wt% 的 Li 3 BO 3 作为烧结添加剂。具有 LiCoO 2 /LLZTO 交联结构的块状复合正极牢固地焊接到 LLZTO 层上,从而优化了锂离子和电子的传输。因此,一步集成烧结工艺实现了 3.9 Ω cm 2 (100 ◦ C) 的超低正极/石榴石界面电阻和高达 2.02 mAh cm −2 的高正极负载。此外,Li 3 BO 3 增强的 LiCoO 2 /LLZTO 界面还能有效减轻 LiCoO 2 的应变/应力,从而有助于实现卓越的循环稳定性。面积容量为 0.73 mAh cm −2 的块体型 Li|LLZTO|LiCoO 2 -LLZTO 全电池在 100 µ A cm −2 下经过 50 次循环后的容量保持率为 81.7%。此外,我们发现不均匀的锂沉积/剥离会导致间隙的形成,最终导致长期循环过程中锂和 LLZTO 电解质的分离,这成为大容量全电池中的主要容量衰减机制。这项工作深入了解了 Li/SSE 界面的退化,并提出了从根本上改善石榴石基全固态锂电池电化学性能的策略。
迫切需要高性能可充电电池来满足电网规模固定式储能的需求。高温电池系统,例如 Na-S 电池、Na-NiCl2 电池(ZEBRA 电池)和液态金属电极 (LME) 电池,表现出高功率密度和高循环稳定性等优点,但也受到高工作温度的影响。我们最近发明了熔融锂金属电池的新概念,它由液态锂阳极、合金(Sn、Bi、Pb)液态阴极和锂离子导体作为固体电解质组成。这里我们展示了一种在相对较低的 210 C 温度下工作的熔融金属氯化物电池。该电池设计包括熔融(AlCl3-LiCl)阴极、固体电解质(石榴石型 Li6.4La3Ta0.6Zr1.4O12(LLZTO)陶瓷管)和熔融锂阳极。组装的 AlCl3-LiCl||LLZTO||Li 全电池的平均放电电压为 1.55 V,能量效率为 83%,已成功循环 100 次(800 小时),容量没有衰减。电池的理论比能为 350 Wh/kg,根据电极材料的重量估计成本为 11.6 美元/千瓦时。考虑到高性能、高安全性、低工作温度和原材料成本低,我们的新型熔融电极电池系统为固定式储能开辟了新的机会。
追求高安全性和高能密度固态电池已成为能源研究的重要点,从而影响了学术界和工业。但是,由于固体电解质(SSE)和电极之间的界面不稳定性,固态电池的实践实现遇到了挑战。一种有希望的解决方案在于基于卤素化学的新SSE家族,以其令人印象深刻的特征而闻名,例如高离子电导率和高压稳定性[1,2]。值得注意的是,利用氯化物SSE的固态细胞具有特殊的循环性能[3,4]。此外,基于LACL 3的电解质的最新工作表明,该氯化物SSE将具有与锂金属阳极的良好兼容性[5]。最近,一类固体电解质(称为氧化氯化物固体电解质)与氯化物相似。然而,基于氯化物的基于氯化物和氧气的细胞仍需要高堆栈压力,通常从几到数百兆帕群,以维持与电极的密切接触。这构成了一个显着的挑战,因为电池组对细胞堆栈压力施加了严格的上限,并且达到理想的压力(低于0.1 MPa)对于固态电池电池的成功设计至关重要[6]。最近,HU和同事在自然能源中提出了一种突破性的解决方案[7]。他们引入了一种创新方法,涉及发现粘弹性无机玻璃(Viglas)氧化氯化物电解质。1 a)。1 B,C)。1 B,C)。通过巧妙地取代氧原子在锂和四氯铝钠内的氯原子(liaLcl 4和NaAlcl 4)中,它们通常将通常易碎的熔融盐转移到粘弹性玻璃类似物中,特异性地,lialcl 2.5 o 0.75 o 0.75(laco)和naalcl 2.5 o.55(naalcl 2.5 o)。这些对应物显示出令人印象深刻的变形水平,类似于有机聚合物电解质,即使在室温下也可以弯曲并折叠[7](如图这是一个重要的里程碑,因为它将有机聚合物电解质的理想特征与调用无机电解质的强度合并。这些强度包括对高压(最多4.3 V)和高离子电导率(超过1 ms/cm)的抗性,如图这些属性有效地应对电极和电解质之间界面上的机械和化学稳定性相关的挑战。结果,功能齐全的LI/LLZTO/LACO75-NCM622和Na/nasicon/