[纸质评论摘要] 1。文章内容本文通过使用TOL2 transposon将导向RNA(GRNA)敲入基因组来建立了一种方便地创建条件敲除小鼠的方法。 2.纸质评论1)为研究目的而开创性和独创性,使用特定周期和组织特异性的条件敲除小鼠至关重要,以分析单个水平的基因功能。但是,传统的CRE/LOXP方法需要多种小鼠菌株的交配,这需要时间和精力。在此背景下,申请人结合了三个现有系统:转座系统,CRE/LOXP系统和CRISPR/CAS9系统,以建立一个系统,允许在短时间内更加方便地创建有条件的淘汰小鼠。这种观点值得认可。 2)社会意义从这项研究中获得的主要结果如下。 1。cag-creer小鼠和rosa-lsl-cas9敲入小鼠被体外受精,质粒和TOL2转座子mRNA,其在TOL2识别序列中夹在小鼠酪氨酸酶的GRNA之间的序列,将Tyr GRNA插入了Born Born Rece的6.3%-13.6%中。 2。当他对出生的小鼠施用他莫昔芬时,在某些情况下观察到头发颜色的变化有限。 3。在三只小鼠(TG1、2、3)中观察到缺失和插入3.1%,6.8%和7.5%的酪氨酸酶基因。 4。当F0雄性小鼠交配时,11.1%的F1小鼠显示GRNA盒传播。如上所述,申请人已经建立了一个系统,该系统允许在短时间内更方便,更简单地创建有条件的敲除小鼠。可以说这是一项有用的研究发现,可以加速个人水平的基因的功能分析。 3)在这项研究中,使用T7分析和深层测序分析了GRNA的基因组裂解,并使用PCR或Southern印迹分析了下一代小鼠中GRNA盒的传播。这种方法是在足够的分子生物学实验技术的支持下进行的,这表明申请人的知识和技术技能在研究方法上足够高,同时可以看出,这项研究是在非常谨慎的准备中进行的。
含有由 CRISPR/Cas9 系统产生的双链断裂 (DSB) 的 DNA 可以通过非同源末端连接 (NHEJ) 或同源定向修复 (HDR) 途径进行修复 (1,2,3)。NHEJ 修复途径在切割位点引入非特异性插入或缺失,而 HDR 途径允许在 DSB 位点进行精确的基因编辑 (1,2,3)。靶向特异性 HDR 质粒为 DSB 提供 DNA 修复模板,当与 CRISPR/Cas9 KO 质粒共转染时,能够在发生 Cas9 诱导的 DNA 切割的位置插入特定的选择标记 (1,2)。HDR 质粒可以整合红色荧光蛋白 (RFP) 基因以直观地确认转染,并整合抗生素抗性基因 (嘌呤霉素) 以选择含有成功 CRISPR/Cas9 双链断裂的细胞。嘌呤霉素抗性和 RFP 编码基因两侧是两个 LoxP 位点,这些位点可被 Cre 载体识别,之后可利用该位点从基因组 DNA 中去除这些选择标记 (4,5)。
摘要:γ-癸内酯作为重要的香料原料,在食品工业中有着广泛的应用。6个过氧化物酶体酰基辅酶A氧化酶(POX)是解脂耶氏酵母中γ-癸内酯代谢的限速酶,但该家族各成员的功能均存在诸多未解决的问题,限制了γ-癸内酯的菌株优化和工业产能效率。本研究在对POX1~POX6的ORF及Flanking序列保守性分析的基础上,基于Cre/LoxP系统设计特异性较高的基因敲除验证引物,基于CRISPR/Cas9系统筛选出2个特异性较高的靶位,实现解脂耶氏酵母POX3基因的特异性敲除,旨在探究POX3的功能,进而细化γ-癸内酯的生产工艺。该研究结果为γ-癸内酯的微生物生产能力提供了新的基因工程设计思路,深入揭示POX基因家族的功能,有助于优化γ-癸内酯的生产效率,为工业化应用奠定理论基础。
含有由 CRISPR/Cas9 系统产生的双链断裂 (DSB) 的 DNA 可以通过非同源末端连接 (NHEJ) 或同源定向修复 (HDR) 途径进行修复 (1,2,3)。NHEJ 修复途径在切割位点引入非特异性插入或缺失,而 HDR 途径允许在 DSB 位点进行精确的基因编辑 (1,2,3)。靶向特异性 HDR 质粒为 DSB 提供 DNA 修复模板,当与 CRISPR/Cas9 KO 质粒共转染时,能够在发生 Cas9 诱导的 DNA 切割的位置插入特定的选择标记 (1,2)。HDR 质粒可以整合红色荧光蛋白 (RFP) 基因以直观地确认转染,并整合抗生素抗性基因 (嘌呤霉素) 以选择含有成功 CRISPR/Cas9 双链断裂的细胞。嘌呤霉素抗性和 RFP 编码基因两侧是两个 LoxP 位点,这些位点可被 Cre 载体识别,之后可利用该位点从基因组 DNA 中去除这些选择标记 (4,5)。
Cre/loxP 系统是生成具有精确空间和时间基因表达的动物模型的强大工具。事实证明,它在生成具有组织特异性表达致癌基因或失活肿瘤抑制基因的癌症模型中是必不可少的。因此,Cre 转基因小鼠已成为基础癌症研究的基本先决条件。虽然猪不太可能在基础研究中取代小鼠,但它们已经为转化研究提供了强大的补充资源。但是,尽管已经生成了有条件靶向的致癌猪,但任何主要人类癌症都不存在 Cre 驱动系。为了在猪中模拟人类胰腺癌,通过 CRISPR/Cas9 介导将密码子改良的 Cre (iCre) 插入猪 PTF1A 基因来生成 Cre 驱动系,从而保证了组织和细胞类型特异性功能,这已使用双荧光报告猪得到证实。所用方法可轻松用于生成其他猪 Cre 驱动系,为在大型动物中模拟人类癌症提供缺失的工具。
结果:在此概念证明中,我们将基因组剃须 - seq应用于小鼠胚胎干细胞和人类癌细胞,每实验产生并绘制数百至数千个SV。我们发现,通过CRE介导的对称LOXP位点产生SVS的细胞是迅速决定的,这可能是由于CRE和/或SVS本身的毒性所致。相比之下,在非对称attb/p位点,通过BXB1介导的重组产生SV的细胞是稳定的。这种稳定性使我们能够研究作用于不同类别BXB1诱导的SV的选择压力,并开始表征其功能后果。首先,我们发现带有较大缺失但没有反转的细胞是从增殖的细胞种群中预先损失的,这部分归因于不容忍中心粒损失。第二,我们观察到,尽管平衡的易位在体外耐受,不平衡的易位,尤其是那些敏感的易位,但迅速耗尽了。最后,通过在基因组洗牌细胞的瓶颈种群中共同合并转录组和盒式盒式条形码配对,我们证明我们可以确保特异性,诱导的SVS对基因表达的后果。
结合 CRISPR-Cas9 技术和单链寡脱氧核苷酸 (ssODN),可以在诱导性多能干细胞 (iPSC) 中的目标基因组位点引入特定的单核苷酸改变;然而,与缺失诱导相比,ssODN 敲入频率较低。尽管已报道了几种 Cas9 转导方法,但是 CRISPR-Cas9 核酸酶在哺乳动物细胞中的生化行为仍有待探索。在这里,我们研究了影响 Cas9 体外裂解活性的内在细胞因素。我们发现细胞内 RNA(而不是 DNA 或蛋白质部分)会抑制 Cas9 与单向导 RNA (sgRNA) 结合并降低酶活性。为了防止这种情况,与 Cas9 过表达方法相比,在递送到细胞之前预复合 Cas9 和 sgRNA 可产生更高的基因组编辑活性。通过优化预复合核糖核蛋白和ssODN的电穿孔参数,我们实现了高达70%的单核苷酸校正效率和高达40%的loxP插入效率。最后,我们可以用C2等位基因替换HLA-C1等位基因,以生成组织相容性白细胞抗原定制编辑的iPSC。
当前市场上销售的伪狂犬病毒(PRV)疫苗的免疫保护效果逐渐降低,并未能对新型PRV变种提供完全保护。本研究利用CRISPR/Cas9和Cre/LoxP基因编辑系统及低熔点琼脂糖纯化法,同时敲除三种主要毒力基因(gE/gI和TK),成功构建了三基因删除活毒株rZDΔTK-gE-gI。接种rZDΔTK-gE-gI PRV候选疫苗的3周龄仔猪在感染PRV强毒株后均存活,且未出现任何临床症状,而所有未接种疫苗的仔猪均出现PRV呼吸道和神经系统症状,感染后7天内死亡率100%。 rZDΔTK-gE-gI候选疫苗在接种仔猪后诱导出高水平的抗gB抗体,其免疫保护效果优于经典毒株Bartha-K61。因此,三基因缺失活PRV候选疫苗有望控制目前由PRV变异株引起的伪狂犬病疫情。
通过产生突变来调节基因活性对理解蛋白质功能做出了重大贡献。然而,突变分析通常使用过表达研究,其中蛋白质脱离了其正常的环境和化学计量。在目前的研究中,我们试图开发一种方法,同时使用 CRISPR/Cas9 和 Cre-Lox 技术来修改内源性 SAT1 基因,以引入蛋白质的突变形式,同时仍受其天然基因启动子的控制。我们通过转录终止元件克隆了野生型 (WT) SAT1 的 C 末端部分,并在关键结合位点包含点突变的相同版本 SAT1 前面与 LoxP 位点相邻。在 CRISPR/Cas9 诱导的 DNA 双链断裂后,通过非同源末端连接 (NHEJ) 将构建体插入内源性 SAT1 基因座。在确认插入事件不会改变 SAT1 的正常功能后,我们便能够通过引入 Cre 重组酶来评估点突变的影响。因此,该系统能够生成内源性 WT SAT1 可以有条件地修改的细胞,并允许在正常启动子和染色质调节的背景下研究位点特异性突变的功能后果。
婴儿型庞贝病 (IOPD) 是由溶酶体酸性 α-葡萄糖苷酶 ( Gaa ) 突变引起的,表现为快速进展的致命性心脏和骨骼肌病,而合成的 GAA 静脉输注不能完全缓解这种症状。目前可用的小鼠模型不能完全模拟人类 IOPD,而是表现出骨骼肌病和晚发型肥厚性心肌病。由于该模型带有 Cre-LoxP 诱导的小鼠 Gaa 基因外显子破坏,因此也不适用于基于基因组编辑的治疗方法。我们报告了一种新型小鼠 IOPD 模型,该模型利用 CRISPR-Cas9 同源重组生成,携带直系同源 Gaa 突变 c.1826dupA (p.Y609 * ),从而导致人类 IOPD,并早期出现严重肥厚性心肌病。我们证明了使用单链寡核苷酸供体的双 sgRNA 方法对 Gaa c.1826 基因座具有高度特异性,并且没有基因组脱靶效应或重排。心脏和骨骼肌缺乏 Gaa mRNA 和酶活性,并积累了高水平的糖原。小鼠表现出骨骼肌无力,但没有经历早期死亡。总之,这些结果表明 CRISPR-Cas9 产生的 Gaa c.1826dupA 小鼠模型重现了人类 IOPD 的肥厚性心肌病和骨骼肌无力,表明其可用于评估新型疗法。