在2024年,他在细菌优先病原体清单中增加了多种多药(MDR)革兰氏阴性细菌,并且MDR革兰氏阴性细菌的持续增加对公共卫生构成了严重威胁。尿苷二磷酸-3- O-(羟基羟基酯) - N-乙酰基葡萄糖胺脱乙酰基酶(LPXC)是与锌离子辅助的金属酶,这是外膜lipid lipid a in Gram conteria的合成的关键酶。LPXC在不同的革兰氏阴性细菌中是高度保守的,并且是同源的,这使LPXC成为对抗多药抗革兰氏阴性细菌的有希望的靶标。自芳唑啉LPXC抑制剂L-573,655的首次报道以来,已经合成和测试了大量针对革兰氏阴性细菌的小分子LPXC抑制剂,例如TU-514,CHIR-090,ACHN-975和TP0586532。但是,只有ACHN-975进入临床I期试验,并且由于安全问题而停产,到目前为止,尚无LPXC抑制剂。本文主要集中于过去10年中小分子LPXC抑制剂的结构优化,构象关系和动物毒性,尤其是在过去的5年中,以便为LPXC抑制剂的发展和临床研究提供思想。
深突变扫描是一种强大的方法,可以研究各种研究问题,包括蛋白质功能和稳定性。在这里,我们使用高通量CRISPR基因组编辑进行了三种必需的大肠杆菌蛋白(FABZ,LPXC和MURA)进行深层突变扫描,并研究突变在其原始基因组环境中的效果。我们使用17,000多种蛋白质来询问蛋白质功能以及单个氨基酸在支持生存力中的重要性。此外,我们利用这些文库来研究针对靶向所选蛋白质的抗菌化合物的耐药性。在研究的三种蛋白质中,Mura由于其低突变的敏感性而似乎是抗微生物靶标,这降低了获得抗药性限制突变的机会,同时保留了Mura功能。此外,我们对抗LPXC铅化合物进行进一步开发的排名,并取决于每种化合物的抗性支配变形物的数量。我们的结果表明,深层突变扫描研究可用于指导药物开发,我们希望这将有助于新型抗菌疗法的发展。
深度突变扫描是一种研究各种研究问题(包括蛋白质功能和稳定性)的有效方法。在这里,我们使用高通量 CRISPR 基因组编辑对参与细胞包膜合成的三种必需大肠杆菌蛋白质(FabZ、LpxC 和 MurA)进行深度突变扫描,并研究突变在其原始基因组环境中的影响。我们使用超过 17,000 种蛋白质变体来研究蛋白质功能和单个氨基酸在支持生存力方面的重要性。此外,我们利用这些库来研究针对选定蛋白质的抗菌化合物的抗药性发展。在所研究的三种蛋白质中,MurA 似乎是更优越的抗菌靶标,因为它的突变灵活性低,这降低了获得同时保留 MurA 功能的抗药性突变的机会。此外,我们根据每种化合物的抗药性突变数量对抗 LpxC 先导化合物进行进一步开发排名。我们的结果表明,深度突变扫描研究可用于指导药物开发,我们希望这将有助于开发新型抗菌疗法。