本文提出了一种新型分层最优控制框架,用于支持多区域输电系统中的频率和电压,并集成电池储能系统 (BESS)。该设计基于来自 BESS 的协调有功和无功功率注入,而不是传统的基于同步发电机的控制,以快速及时地缓解电压和频率偏差。这个新想法的原理是使用两个分层方案,一个是物理的,一个是逻辑的。第一个方案的目标是优先从发生意外事件的区域安装的 BESS 注入功率,从而减少对邻近区域的动态干扰。在第二个方案中,每个方案中都纳入了聚合 BESS 的运行规则,从而提高了资产的安全性。所提出的方法利用了时间同步测量、特征系统实现算法 (ERA) 识别技术、最优线性二次高斯 (LQG) 控制器和新的聚合代理的优势,该聚合代理以分层和可扩展的方案协调 BESS 的功率注入,以精确调节现代输电网的频率和电压,提高其可靠性和稳定性。使用模拟场景证明了该提案的可行性和稳健性,该场景具有显著的负载变化和三相、三周期故障,改进的 Kundur 系统具有四个互连区域,可在不到 450 毫秒的时间内缓解频率和电压突发事件。
<90 天 少于 90 天 ASD 积累开始日期 AST 地上储罐 BMP 最佳管理实践 CA 缔约授权 CFL 紧凑型荧光灯泡 CFR 联邦法规 CHRIMP 综合危险品再利用清单和管理计划 CLIN 合同项目编号 CO 指挥官 CY 日历年 DLA 国防后勤局 DoD 国防部 DOT 运输部 EC 应急协调员 EMS 环境管理系统 EO 行政命令 EOC 紧急行动中心 EPA 美国环境保护署 EPCRA 应急计划和社区知情权法案 EPP 环境优先产品 ERG 应急响应指南 E-Waste 电子废物 FEAD 设施工程和采购部 HAZWOPER 危险废物运营和应急响应 HID 高强度排放 HPW 危险制药废物 HWC 危险废物协调员 HWCP 危险废物应急计划 HWMP 危险废物管理计划 HWPM 危险废物计划经理 IC 事件指挥官 ID 标识 IEPD 设施环境计划主管 ISSA 跨部门支援协议 kg 千克 LDR 土地处置限制 LQG 大量发生器 MDEQ 密西西比州环境质量部 MEMA 密西西比州应急管理局 密西西比州行政法规 密西西比州行政法规 密西西比州法规附录 密西西比州法规注释
使用图形本地化网络进行视觉导航的行为方法。RSS 2019。 [28] Martin J. Zhang,Fei Xia,James Zou。 adafdr:一种快速,强大和协变量的自适应方法,用于多个假设检验。 2019年Rebomb的最佳纸张奖。 [29] Martin J. Zhang,Fei Xia,James Zou。 快速和协变量的自适应方法在大规模多种假设检测中放大检测能力。 自然通讯。 [30] Soheil Feizi,Changho Suh,Fei Xia和David Tse。 理解gans:LQG设置。 [31] Fei Xia*,Martin Zhang*,James Zou,David Tse。 NeuralFDR:从假设特征学习决策阈值。 NIPS 2017。 [32] Qiao Liu,Fei Xia,Qijin Yin,Rui Jiang。 通过混合深卷积神经网络预测染色质的可及性预测。 生物信息学,2017年。 [33] Govinda Kamath*,Ilan Shomorony*,Fei Xia*,Thomas Courtade,David Tse。 铰链:长阅读组装实现最佳重复分辨率。 基因组研究第27卷2017年。 [34] Ilan Shomorony,Govinda Kamath,Fei Xia,Thomas Courtade和David Tse,部分DNA大会:利率依赖性的观点。 ISIT 2016。 [35] Anastasia dubrovina,Fei Xia,Panos Achlioptas,Mira Shalah,Leonidas Guibas。 通过潜在空间分解进行复合形状建模。 ICCV 2019。RSS 2019。[28] Martin J. Zhang,Fei Xia,James Zou。adafdr:一种快速,强大和协变量的自适应方法,用于多个假设检验。2019年Rebomb的最佳纸张奖。[29] Martin J. Zhang,Fei Xia,James Zou。快速和协变量的自适应方法在大规模多种假设检测中放大检测能力。自然通讯。[30] Soheil Feizi,Changho Suh,Fei Xia和David Tse。理解gans:LQG设置。[31] Fei Xia*,Martin Zhang*,James Zou,David Tse。NeuralFDR:从假设特征学习决策阈值。NIPS 2017。 [32] Qiao Liu,Fei Xia,Qijin Yin,Rui Jiang。 通过混合深卷积神经网络预测染色质的可及性预测。 生物信息学,2017年。 [33] Govinda Kamath*,Ilan Shomorony*,Fei Xia*,Thomas Courtade,David Tse。 铰链:长阅读组装实现最佳重复分辨率。 基因组研究第27卷2017年。 [34] Ilan Shomorony,Govinda Kamath,Fei Xia,Thomas Courtade和David Tse,部分DNA大会:利率依赖性的观点。 ISIT 2016。 [35] Anastasia dubrovina,Fei Xia,Panos Achlioptas,Mira Shalah,Leonidas Guibas。 通过潜在空间分解进行复合形状建模。 ICCV 2019。NIPS 2017。[32] Qiao Liu,Fei Xia,Qijin Yin,Rui Jiang。通过混合深卷积神经网络预测染色质的可及性预测。生物信息学,2017年。[33] Govinda Kamath*,Ilan Shomorony*,Fei Xia*,Thomas Courtade,David Tse。铰链:长阅读组装实现最佳重复分辨率。基因组研究第27卷2017年。[34] Ilan Shomorony,Govinda Kamath,Fei Xia,Thomas Courtade和David Tse,部分DNA大会:利率依赖性的观点。ISIT 2016。 [35] Anastasia dubrovina,Fei Xia,Panos Achlioptas,Mira Shalah,Leonidas Guibas。 通过潜在空间分解进行复合形状建模。 ICCV 2019。ISIT 2016。[35] Anastasia dubrovina,Fei Xia,Panos Achlioptas,Mira Shalah,Leonidas Guibas。通过潜在空间分解进行复合形状建模。ICCV 2019。ICCV 2019。
凝聚态理论中的张量网络算法 [1-5] 最近在量子引力领域产生了巨大影响,成为研究普朗克尺度时空性质及其全息特性的有力新工具。在 AdS/CFT 框架中,Ryu-Takayanagi 公式与几何/纠缠对应 [6-9] 相结合,导致了一种新的全息对偶构造方法,如今由 AdS/MERA 猜想 [10] 进一步捕获,该猜想建议将量子多体边界态的辅助张量网络分解的几何解释为对偶体几何的表示 [11,12]。张量网络在此意义上的使用产生了一种新的构造方法 [13],其中某些全息理论的关键纠缠特征可以通过张量网络状态类来捕获。在量子引力的非微扰方法中,包括圈量子引力(LQG)和自旋泡沫模型[14-17]及其在群场论(GFT)方面的推广[18-20],前几何量子自由度被编码在随机组合自旋网络结构中,用SU(2)的不可约表示标记,并在每个节点上赋予规范对称性。此类自旋网络态可理解为特殊的对称张量网络[21,22],张量网络技术已在量子引力领域得到广泛应用[23-26]。在半经典层面上,离散时空和几何与此类结构自然相关,其量子动力学与(非交换的)离散引力路径积分相关[27-30]。悬而未决的问题是展示连续时空几何和广义相对论动力学如何从具有相同前几何自由度的全量子动力学中诞生,这实际上将量子时空描述为一种特殊的量子多体系统[31-33]。从这个意义上说,张量网络技术已广泛应用于圈量子引力背景下的自旋泡沫重正化问题[23-26],以及用于分析自旋网络纠缠结构的定量工具,并寻找具有与半经典解释中的良好几何兼容的关联和纠缠特性的自旋网络态类。最近,张量网络表示方案已被用于提取自旋网络态非局域纠缠结构的信息,并在背景独立的情况下理解局域规范结构对全息纠缠的普适标度特性的影响[34]。沿着这条思路,一些作者在 [ 35 ] 中定义了随机张量网络和群场论 (GFT) 状态之间的精确词典,并以此为基础在非微扰量子引力背景下首次推导了 Ryu-Takayanagi 公式 [ 6 ]。该字典还在对 GFT 状态进行不同限制的情况下,暗示了 LQG 自旋网络状态与张量网络之间的对应关系,以及随机张量模型 [ 36 ] 与张量网络之间的对应关系。总结上述字典,GFT 状态定义了具有场论公式和量子动力学的(广义)规范对称张量网络。GFT 张量的场论性质提供了一种自然的随机解释,尽管它对应的概率测度通常与标准随机张量网络模型的概率测度不同。此外,GFT 网络的主要特征——晶格拓扑、张量序、键维数——不是固定的,而是由所考虑的特定 GFT 模型动态诱导的。从这个意义上说,GFT 定义了通常张量网络的广义。因此,GFT 定义的张量网络的关联函数将在很大程度上取决于模型的选择。如 [ 35 ] 所示,标准随机张量网络模型与 GFT 张量网络之间的相似性在非相互作用 GFT 理论的最简单情况下尤其明显,其中理论的传播子诱导最大纠缠