了解神经动力学如何引起行为是系统神经科学中最基本的问题之一。为了实现这一点,一种常见的方法是记录行为动物的神经群体,并将这些数据建模为来自潜在动力系统,该系统的状态轨迹随后可以通过某种形式的解码与行为观察相关联。由于记录通常在仅构成更广泛牵连网络的一部分的局部电路中进行,因此同时学习局部动态并推断可能驱动它们的任何未观察到的外部输入非常重要。在这里,我们介绍了 iLQR-VAE,这是一种基于控制的新型非线性动态系统变分推理方法,能够学习潜在动态、初始条件和持续的外部输入。与最近的深度学习方法一样,我们的方法基于输入驱动的顺序变分自动编码器 (VAE)。主要的新颖之处在于在识别模型中使用强大的迭代线性二次调节器算法 (iLQR)。标准证据下限的优化需要通过 iLQR 解决方案进行区分,这得益于可区分控制方面的最新进展。重要的是,通过生成模型隐式定义识别模型可以大大减少自由参数的数量,并允许灵活、高质量的推理。例如,这使得在对较小块进行训练后,可以在一次长时间试验中评估模型。我们展示了 iLQR-VAE 在一系列合成系统上的有效性,这些系统具有自主和输入驱动的动态。我们进一步展示了在两个不同的伸手任务中对非人类灵长类动物的神经和行为记录的最新性能。
考虑到近年来科技的发展,飞机模型的动力学分析具有重要的意义,人们提出了新的方法和控制设计来描述和改进飞机的动力学、控制和稳定性。在这种情况下,战斗机在战斗情况下的行为至关重要,因为该系统的运行更接近其极限区域,并且要处理更高的速度和各种各样的攻角。对于 [1] ,飞机的动力学自然是非线性的,因为作用在系统上的许多力,例如阻力和升力以及空气层的方向及其与所选参考的关系。因此,忽视非线性方面可能会限制系统代表性模型的能力,从而限制其电子控制器的能力。根据 [2] ,对于更现实的模型,必须考虑固有的非线性和不确定性,以避免不稳定的运行区域,从而实现更高效、更现实的控制项目。
近年来的技术和科学发展,提出了新的方法和控制设计来描述和改进飞机的动力学、控制和稳定性。在这种情况下,战斗机在战斗情况下的行为至关重要,因为该系统在更接近其极限区域的情况下运行,并且要处理更高的速度和各种各样的攻角。对于 [1] ,由于作用于系统的许多力,例如阻力和升力以及空气层的方向及其与所选参考的关系,飞机的动力学自然是非线性的。因此,忽略非线性方面可能会限制系统代表性模型及其电子控制器的能力。根据 [2] ,对于更现实的模型,必须考虑固有的非线性和不确定性,以避免不稳定的运行区域,从而实现更高效和更现实的控制项目。
摘要:本文介绍了一种在并非所有状态都可用的情况下针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。
摘要:本文介绍了一种在并非所有状态都可用的情况下针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。
摘要:本文介绍了一种在并非所有状态都可用的情况下针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。
摘要:本文介绍了一种在并非所有状态都可用的情况下针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。
摘要:本文介绍了一种当并非所有状态都可用时,针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。
摘要:本文介绍了使用差分进化 (DE) 来调整比例积分微分 (PID) 控制器、具有积分作用的线性二次调节器 (LQR) 以进行飞机俯仰控制。提出了两个控制器的优化问题,以优化超调百分比、稳定时间和稳态误差,同时应用加权和技术。PID 控制器的设计变量是控制增益,而 LQR 控制器的设计变量是 Q 和 R 矩阵。LQR 控制器采用各种积分控制增益值,从而形成具有积分作用控制器的 LQR。在添加一些干扰的同时,基于单步和多步响应研究了最佳控制器的性能。结果表明,PID 控制器对响应速度有效,而具有积分作用控制器的最佳 LQR 对消除稳态误差有效。两种最佳控制器都具有鲁棒性,可以处理干扰抑制。关键词:PID、LQR 积分作用、DE、飞机俯仰控制
