摘要 人类的初级和次级神经管形成过程(形成脊髓的过程)尚未完全了解,这主要是因为获取神经管形成阶段胚胎(受精后 3-7 周)的难度较大。本文,我们描述了 108 个人类胚胎的发现,涵盖卡内基阶段 (CS) 10-18。初级神经管形成在后神经孔处完成,神经板弯曲与小鼠相似但不完全相同。次级神经管形成从 CS13 开始,形成单个管腔(如小鼠中一样),而不是多个管腔(如鸡中一样)融合。没有证据表明从初级神经管形成到次级神经管形成存在“过渡区”。60% 的近端人类尾部区域发生次级神经管“分裂”。人类每 7 小时形成一个体节,而小鼠为 2 小时,人类类器官的“分节时钟”为 5 小时。 CS15 胚胎尾芽中 WNT3A 和 FGF8 下调后,轴向伸长终止,伴随“爆发性”细胞凋亡,可能消除神经中胚层祖细胞。因此,人类和小鼠/大鼠脊髓神经形成的主要差异与时间有关。研究人员现在正试图在干细胞衍生的类器官中重现神经形成事件,我们的结果为解释此类研究结果提供了“规范数据”。
摘要 肠道微生物群分解不可消化的淀粉后释放的挥发性小分子,包括短链脂肪酸 (SCFA)、乙酸盐和丙酸盐,可通过特定的 G 蛋白偶联受体 (GPCR) 以类似激素的方式发挥作用。这些 SCFA 的主要 GPCR 靶标是 FFA2 和 FFA3。使用转基因小鼠(其中 FFA2 被一种称为设计药物专门激活的设计受体 (FFA2-DREADD) 的改变形式取代,但 FFA3 保持不变)和新发现的 FFA2-DREADD 激动剂 4-甲氧基-3-甲基苯甲酸 (MOMBA)),我们展示了 FFA2 和 FFA3 的特定功能如何定义 SCFA-肠-脑轴。肠腔内 FFA2/3 的激活会刺激脊髓活动,而肠道 FFA3 的激活会直接调节感觉传入神经元的放电。此外,我们证明 FFA2 和 FFA3 均在背根神经节和结状神经节中功能性表达,它们通过不同的 G 蛋白和机制发出信号来调节细胞钙水平。我们得出结论,FFA2 和 FFA3 在不同水平上发挥作用,为肠道微生物群来源的 SCFA 调节中枢活动提供了一个轴。
摘要 肠道微生物群分解不可消化的淀粉后释放的挥发性小分子,包括短链脂肪酸 (SCFA)、乙酸盐和丙酸盐,可通过特定的 G 蛋白偶联受体 (GPCR) 以类似激素的方式发挥作用。这些 SCFA 的主要 GPCR 靶标是 FFA2 和 FFA3。使用转基因小鼠(其中 FFA2 被一种称为设计药物专门激活的设计受体 (FFA2-DREADD) 的改变形式取代,但 FFA3 保持不变)和新发现的 FFA2-DREADD 激动剂 4-甲氧基-3-甲基苯甲酸 (MOMBA)),我们展示了 FFA2 和 FFA3 的特定功能如何定义 SCFA-肠-脑轴。肠腔内 FFA2/3 的激活会刺激脊髓活动,而肠道 FFA3 的激活会直接调节感觉传入神经元的放电。此外,我们证明 FFA2 和 FFA3 均在背根神经节和结状神经节中功能性表达,它们通过不同的 G 蛋白和机制发出信号来调节细胞钙水平。我们得出结论,FFA2 和 FFA3 在不同水平上发挥作用,为肠道微生物群来源的 SCFA 调节中枢活动提供了一个轴。
肠道菌群是一个复杂的生态系统,由细菌,真菌,古细菌和与人类有机体共生的病毒组成。在消化系统上定居的细菌,古细菌和真核生物的收集已与其宿主建立了数千年的这种迷人的共生关系,其特征是复杂的相互利益相互作用[1]。这些微生物的总数估计在10 13和10 14之间,一个接近人体所有细胞的数量[2]。此外,所有这些微生物的遗传构成被称为微生物组,它比人类大[3]。仅在近年来,得到一些非常重要的发现的支持,并且在宏基因组学和16S核糖体RNA基因测序的基本贡献下,对肠道微生物群的组成和许多功能进行了更好的研究和理解[4]。肠道菌群在生理上是由牢固的,细菌,proteobacteria,ptereobacteria,statinobacteria,Euryarchaeota和verrucomicrobia组成的[5](图1)。最多的细菌门是细菌和企业,占肠道菌群的90%以上[6]。肠屏障构成了针对病原体以及有毒和饮食化合物的保护性防御[7]。它是由外部上皮层和内皮内皮层形成的,该层分别形成肠道上皮和血管屏障[8]。微生物群驻留在肠道中的肠道内粘膜[9]。
哮喘是一种可影响所有年龄段人群的疾病,发病率从 20% 的 6-7 岁儿童(严重喘息发作)到全球发病率为 1% 至 21% 的成人不等 [1]。支气管哮喘是一种异质性疾病,其症状以慢性气道炎症为特征。最典型的症状是呼吸短促、呼吸困难、喘息、咳嗽和胸闷。随着时间的推移,未经治疗的哮喘可能导致进行性气道重塑,从而导致气流阻塞 [2, 3]。引起哮喘的主要因素是过敏原,包括室内过敏原(灰尘、家庭污染或宠物的存在)和室外过敏原(花粉、霉菌、螨虫),但也有其他环境和个人因素可引发哮喘(图 1)[4]。过敏性哮喘具有慢性下呼吸道感染的 Th2 特征,其中,通过将平衡向具有 Th2 表型的 CD4 + 淋巴细胞倾斜,支气管上皮产生这种特征的细胞因子,这是 I 型超敏反应的特征。过敏性哮喘的主要反应是抗原(过敏原)附着于 IgE,与肥大细胞和嗜碱性粒细胞上的免疫球蛋白 E (FcεRI) 的高亲和力受体连接。这种连接后,释放出各种介质,导致支气管阻塞(血管腔变窄)炎症(图 2)。其他特征是
生物纳米孔对控制生物分子跨细胞脂质膜的进出口至关重要。它们在生物物理学和生物技术领域得到广泛应用,其通常较窄且固定的直径能够选择性地运输离子和小分子,以及用于测序应用的 DNA 和肽。然而,由于其通道尺寸较小,因此无法通过较大的大分子,例如治疗剂。在这里,利用 DNA 折纸纳米技术、机器启发设计和合成生物学的独特组合特性,提出一种结构可重构的 DNA 折纸 MechanoPore (MP),其管腔可通过分子触发器调整大小。通过 3D-DNA-PAINT 超分辨率成像和染料流入分析证实了 MP 在 3 个稳定状态之间的可控切换,这是通过反相乳液 cDICE 技术在脂质体膜中重建大型 MP 后实现的。跨膜运输的共聚焦成像显示了具有可调阈值的尺寸选择性行为。重要的是,构象变化是完全可逆的,证明了强大的机械切换可以克服来自周围脂质分子的压力。这些 MP 推动了纳米孔技术的发展,提供了可以根据需要进行调整的功能性纳米结构,从而影响了药物输送、生物分子分选和传感以及自下而上的合成生物学等多种领域。
摘要伤寒毒素是伤寒沙门氏菌(人类伤寒的病因)的重要毒力因子。这种毒素具有不寻常的生物学特性,因为它仅在宿主细胞内时才由伤寒沙门氏菌产生。一旦合成,毒素就会分泌到含有沙门氏菌的液泡腔中,然后通过囊泡载体中间体将其运输到细胞外空间。在这里,我们报告了伤寒毒素分选受体和细胞机制成分的鉴定,这些细胞机制将毒素包装到囊泡载体中并将其输出到细胞外空间。我们发现阳离子非依赖性甘露糖-6-磷酸受体充当伤寒毒素分选受体,并且外壳蛋白 COPII 和 GTPase Sar1 介导其包装到囊泡载体中。伤寒毒素携带者的形成需要伤寒沙门氏菌所含液泡的特定环境,而该环境由其 III 型蛋白分泌系统的特定效应物的活动决定。我们还发现 Rab11B 及其相互作用蛋白 Rip11 控制伤寒毒素携带者的细胞内运输,以及 SNARE 蛋白 VAMP7、SNAP23 和 Syntaxin 4 控制其与质膜的融合。伤寒毒素选择特定的细胞机制将其运输到细胞外空间,这说明了外毒素在细胞内病原体环境中发挥其功能的显著适应性。
Ledlenser HF8R工作可充电头火炬是在长时间内在黑暗中工作的强大旗舰模型。三个亮度级别以及1600个管腔提升效果以红色的前灯提供补充,以保护夜视,并通过高色渲染索引(CRI)进一步增强 - 非常适合那些需要更准确的颜色的人。出色的功能是申请专利的自适应光束技术,一旦激活,它允许自动调光和聚焦;使其成为免提头部火炬,根本不需要手动控制。无缝的洪水聚焦点由另一种正在申请的专利技术(直觉的数字高级焦点系统)提供。如果需要遥控器和进一步的个性化功能,则可以通过Ledlenser Connect应用程序(付费升级)来实现这些功能。轻巧的健壮铝制外壳可保护敲击,而令人印象深刻的IP68等级再次提供高水平的防护和水入口;如此之多,以至于即使暂时淹没,光仍将保持工作。运输锁定模式可防止意外电池耗尽,磁性接触电荷系统可以无需从其外壳中卸下电池的无需电池充电。提供壁挂式安装座和各种头盔安装选项。由7年的注册保修支持,以完全安心。
家族性高胆固醇血症 (FH) 是一种遗传性疾病。它是一种常染色体显性遗传模式。它是一种代谢性疾病。19 号染色体的突变会导致这种疾病。19 号染色体编码低密度脂蛋白 (LDL) 受体 (LDLR) 的数据。LDLR 可以降低循环中升高的 LDL 水平,也可以维持正常的 LDL 水平。它会导致早期患心血管疾病的风险。FH 的特征是由于 LDLR 的突然变化导致血液中 LDL 水平升高,从而导致血液中 LDL 的清除率降低。斑块沉积在动脉管腔中,称为动脉粥样硬化,发生在年轻时。如果两个基因都受到影响,则为纯合 FH (HoFH);这种情况非常罕见。当单个基因受到影响时,这种情况称为杂合 FH (HeFH)。 HoFH 比 HeFH 更早出现严重的心脏病。FH 的主要原因是 LDLR 基因突变,而其他原因包括载脂蛋白 B (apo B)、前蛋白转化酶枯草溶菌素/kexin 9 型 (PCSK9)、LDLR 衔接蛋白 1 (LDLRAP 1) 等各种基因突变。为了预防 FH 引起的心血管危机,必须尽早诊断并有效治疗。随着医学科学的研究和进步,许多旨在降低血液中 LDL 水平的现有和新型疗法正在涌现。
我们饶有兴趣地阅读了 van der Sommen 等人的文章 1,并提出了在临床实践中采用人工智能 (AI) 辅助内窥镜检查的一些重要和相关观点。计算机辅助诊断系统已成功应用于胃肠道的所有部分,甚至是巴雷特食管发育不良的诊断,这是专家内窥镜医师的祸根。2 最近,与专家内窥镜医师的表现相比,实时计算机辅助检测 (CADe) 系统的结肠镜检查实现了更高的息肉检测率。3 然而,在将 CADe 应用于传统食管胃十二指肠镜检查 (OGD) 时,不可避免地会讨论如何提高难以发现的胃癌 (GC) 的检测率。与食道和结肠等其他胃肠道解剖特征相比,胃具有更宽、弯曲的管腔,这意味着在没有盲点的情况下,胃部观察更加费力。在常规 OGD 中,内镜医师必须在更远的视野中将胃肿瘤与周围的胃炎粘膜区分开来,而不是通过近距离图像检测结直肠肿瘤和 Barrett 相关发育不良。此外,早期胃癌通常表现出细微的隆起或凹陷,其不规则的外观很容易隐藏在幽门螺杆菌感染引起的粗糙背景胃炎中。因此,即使是专家有时也很难发现早期胃癌,尤其是较小的胃癌。早期胃癌检测的这种困难可能导致