摘要 - 基于医学互联网(IOMT)和环境技术的监视内姿势估计对许多应用具有重大影响,例如与睡眠相关的疾病,包括阻塞性睡眠呼吸暂停综合症,睡眠质量评估和压力溃疡的健康风险。在这项研究中,已经提出了使用深度学习框架提出的新的多模式内姿势估计。同时收集的多模式说谎姿势(SLP)数据集已用于对所提出的框架进行性能评估,其中使用了两种模式,包括长波红外(LWIR)和深度图像来训练拟议的模型。这项研究的主要分配是特征融合网络和生成模型的使用来生成与其他模态相似的RGB图像(LWIR/DEPTH)。包含生成模型有助于提高姿势估计算法的总体准确性。此外,可以将该方法推广到在各种覆盖厚度水平下在家庭和医院环境中恢复人类姿势的情况。将所提出的模型与其他基于融合的模型进行了比较,并显示了PCKH @ 0.5的97.8%的提高性能。此外,已经评估了不同覆盖条件的性能,在家庭和医院环境下,使用我们建议的模型进行了改进。
3.6.1技术描述2 - 声传感器网络(3.7 on 5)3-5 3.6.2技术描述7 - 用于成像的便携式低成本雷达和3-6通信(2 on 5)3.6.3技术描述8 - 高光谱vnir/lwir:scopes/scopes/binocular/binocular,3-6 subeverance,3-6 Surveillance,sniper sectection,3。3. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6 on。 Doppler Radar for 3-7 Through-the-Wall-Sensing (3.3 on 5) 3.6.5 Technology Description 11 – Long Wavelength Infrared (LWIR) (4.4 on 5) 3-8 3.6.6 Technology Description 12 – Coherent Radar Through Wall System (3.7 on 5) 3-8 3.6.7 Technology Description 14 – Sensor System for Vehicle Situation Awareness 3-9 (4.4 on 5) 3.6.8 Technology Description 15 – Tunable THz Imager (4.1 on 5)3-9 3.6.9技术描述17 - 卡拉迪姆:无人看管的地面警报传感器(2 on 5)3-10 3.6.10技术描述18 - DAOTE:DAOTE:检测隐藏的3-10狙击手(3.7 on 5)3.6.6.11技术描述19 - PILAR:PILAR:PILAR:PILAR:OACOSTIC,SNIPERTIC 3.11 3-11 3-11 ON:传感器(1.9 on 5)3-11 3.6.13技术描述21 - 眼镜蛇:反电池雷达(4.1 on 5)3-12 3.6.14技术描述22 - 叶子渗透:叶子穿透(1 on 5)3-12 3.6.15技术说明37 - 短期生物百叶窗 - 短距离生物百叶窗(5)3.6.6.6.6.6.16技术范围38 – Spy and and and op and wowl(4. 38 – Spy and towr(4)。 3-13 3.6.17技术描述42 - 主动防御传感器系统(2.1 on 5)3-14
如今,红外热仪越来越流行,并在各个应用领域中使用,例如环境保护,土木工程,医学,空间,军事和科学。这是半导体技术取得重大进展的结果,导致低噪声,高度积分和节能的集成电路。应用领域似乎是无限的,因为在高于0k≈–273°C的温度下的每个物体都会发出电磁辐射[1-4,7,8]。通常观察到的图像在可见的光谱中被观察。通常,更有趣和更有用的是有关电磁辐射的“无形”带中获得的对象的其他信息[3,4]。这样的辐射是红色辐射,它构成了电势波长1 与热成像相机的检测器不同,人眼本身无法检测到,更不用说测量辐射的波长了。 红外探测器是热成像摄像头的主要元素。 提出的项目使用由无定形硅(A-SI)制成的LWIR光谱范围内运行的微量光度检测器。 目前,还有其他可用的检测器。 在许多情况下,在低温下,有光子检测器在低温下运行[2]。 直到2000年,只生产了用液氮冷却冷却的探测器,毛发系统和stirling泵。 在热ima- 中与热成像相机的检测器不同,人眼本身无法检测到,更不用说测量辐射的波长了。红外探测器是热成像摄像头的主要元素。提出的项目使用由无定形硅(A-SI)制成的LWIR光谱范围内运行的微量光度检测器。目前,还有其他可用的检测器。在许多情况下,在低温下,有光子检测器在低温下运行[2]。直到2000年,只生产了用液氮冷却冷却的探测器,毛发系统和stirling泵。在热ima-
图 1 海地国家宫殿。2010 年地震。太子港(海地) ................................................................................................ 9 图 2 2011 年世界贸易中心的 CRASAR 机器人 .............................................................................. 13 图 3 迭代模型 ........................................................................................................................ 18 图 4 搜索和救援 MAV(Eurecat-Ascamm) ............................................................................. 19 图 5 搜索和救援副驾驶概念 ...................................................................................................... 22 图 6 MAV 副驾驶原型 ............................................................................................................. 22 图 7 视觉惯性传感器 [45] ............................................................................................................. 23 图 8 FLIR Tau2 LWIR 传感器 [46] ................................................................................................ 23 图 9 Pointgrey Firefly FMVU-03MTM-CS ............................................................................................. 24 图 10 概念参考软件架构 ............................................................................................................. 27 图 11 ROS 节点的概念部署图................................................ 28 图 12 保证定位策略 .............................................................................................. 30 图 13 可重构导航解决方案架构 ................................................
标题:迈向多光谱红外成像 演讲者姓名:Elahe Zakizade 博士 公司名称/研究所:弗劳恩霍夫微电子电路与系统研究所 项目名称:Eurostars SPEKTIR 资助小组:Eurostars 摘要是否可以在网站上发表: ☒ 是 ☐ 否 提供最多 500 字的摘要。使用 ARIAL 字体,11 号。如果使用图表,文本和图表必须保持在这一页内。 近年来,热成像相机市场不断增长。主要驱动因素是基于微测辐射热计技术的非制冷红外焦平面阵列 (IRFPA),因为它们是低成本成像仪,不需要额外的复杂和昂贵的冷却系统。大多数当前的热成像应用都基于长波红外 (LWIR) 辐射的检测,波长覆盖从 8 μm 到 14 μm,对人体温度敏感,不仅可用于军事应用,而且在智能手机、监控摄像头或自动驾驶汽车等大众市场应用中也越来越受欢迎。此外,非制冷热像仪在波长范围为 3 μm 至 5 μm 的中波红外 (MWIR) 中也能敏感。MWIR 传感器可用于监测温度高达几百摄氏度的“热源”、检测危险或易燃气体或环境监测等应用。红外区域多光谱成像的实现引起了广泛关注,因为它能够可视化和组合来自 MWIR 和 LWIR 区域的信息。微测辐射热计作为非制冷 IRFPA 的传感元件,采用热原理运行。它们是独立的隔热传感器膜。它们吸收红外辐射并将其转化为温度上升。微测辐射热计膜的温度变化会导致电阻随入射功率的变化而变化。CMOS 读出电路将微测辐射热计随温度变化的电阻变化转换为数字值并生成图像。实现多光谱吸收的一种有前途的方法是使用等离子体超材料吸收器 (PMA)。在过去的几十年中,等离子体领域因其各种潜在应用而备受关注,尤其是在可见光谱范围内。等离子体结构的研究也已扩展到红外区域,以实现高吸收率并调整中波红外和长波红外光谱区域的吸收波长。实现适用于弗劳恩霍夫 IMS 微测辐射热计技术的合适吸收器的有希望的候选材料是金属-绝缘体-金属 (MIM) 结构,该结构由上部周期性金属结构、中间介电层和下部金属反射层组成,以在所需的吸收波长下产生强局部表面等离子体共振。材料选择,弗劳恩霍夫 IMS 研究了沉积技术和图案化工艺,以实现高灵敏度的多光谱热成像。弗劳恩霍夫 IMS 将报告其在实现多光谱红外成像方面取得的进展。它将展示用于多光谱红外成像的带有等离子体超材料吸收器的微测辐射热计的最新模拟结果和实验表征。
垂直整合的解决方案也在不断涌现。OroraTech 成立于 2018 年,是 ESA BIC Bavaria 校友,成功完成了 FOREST-1 任务:一颗配备 RGB、长波红外 (LWIR) 和中波红外 (MWIR) 摄像机的卫星,于 2022 年 1 月搭载 Spire 纳米卫星发射升空 15 。OroraTech 在市场上提供的产品野火情报解决方案利用卫星数据进行野火探测和监测以及精确的损害评估。它被全球客户使用,每天探测到 1000 多起火灾,保护了超过 1.6 亿公顷的森林。OroraTech 的解决方案客户来自林业、政府和非政府组织部门,遍及六大洲。通过 ESA InCubed 计划,ESA 正在支持 OroraTech 的 FOREST-3 实施阶段 17 。
在车载太空系统上的广泛的传感器,设备和仪器范围会产生大量旨在传输到地面的数据。但是,下行链路数据速率固有地通过传输功率和地面站访问来限制。边缘计算旨在通过将处理硬件靠近数据源的处理硬件来减少数据链路内链路内的延迟和带宽。在本文中,我们将边缘计算应用于卢森堡大学开发的热异常检测的有效载荷。有效载荷包括一系列前瞻性红外(FLIR)高分辨率长波长红外(LWIR)微摄像机作为边缘感应组件,以生成热图像。使用支持向量机(SVM)算法来检测异常情况,可用于处理热图像和热分布纤维的边缘计算系统,用于处理热图像和热分布。©2025 Cospar。由Elsevier Ltd发布的所有权利保留。
量子级联激光(QCL)系统已经成熟,并且在新一代产品的先锋范围内,这些产品支持军事应用,例如红外对策(IRCM)(IRCM)和目标。飞机平台的苛刻产品需求包括降低尺寸,重量,功耗和成本(SWAP-C)扩展到便携式电池供电的手持产品。QCL技术在整个中波(MWIR)和长波(LWIR)红外运行,以提供利用现有热成像摄像机的新功能。除了对飞机平台的适用性外,QCL产品非常适合满足操作员对小型,轻巧的指针和信标功能的需求。高功率,轻巧,电池操作的设备的现场测试已在一系列空气和地面应用中证明了它们的实用性。本演讲将介绍QCL技术以及由其启用的防御和安全产品和功能的概述。本演讲还将概述与基于QCL技术相关的产品相关的广泛环境和性能测试。
可见光摄像机能够使用波长范围从 0.4 到 0.7 µm 的电磁波记录适当照明的物体的图像。在波长超过 0.7 µm 的物体上成像非常有用,因为它可以揭示有关物体的更多信息并实现新的应用。然而,在更长的波长上成像需要配备特殊红外图像传感器和不同光学器件的摄像机 [1, 2, 3]。在众多类型的红外图像传感器和探测器技术中,有微测辐射热计,它实现了非制冷且价格实惠的热红外摄像机。这种热红外摄像机允许人们通过物体的辐射热(即通过普朗克辐射定律描述的红外辐射发射)获取物体的图像。微测辐射热计主要对长波红外 (LWIR) (8-14) µm 敏感,这与地球大气中的透明波段相吻合。与可见光摄像机一样,热红外摄像机在国防、交通、监控、消防、热成像和户外休闲方面具有许多应用和巨大的市场。许多新的应用领域都得益于微测辐射热计
雷神空间与机载系统正在积极推进这一系统,因为该系统具有有益的探测器化学特性。砷掺杂硅 (Si:As) 焦平面为长波红外 (LWIR) 天文学和地球传感应用提供了卓越的性能;然而,操作需要低温冷却至 12 K 以下。现有的最先进的空间和机载闭式循环低温冷却器系统通常无法同时将所需负载保持在 12 K / 55 K 以下,因此通常采用储存制冷剂系统。所需制冷剂的数量相当大,很容易超过仪器的质量和体积。因此,发射质量和体积限制对任务寿命产生了严重限制。因此,闭环低温解决方案不仅可以提供更小的质量和体积,还可以提供更长的任务寿命和更低的物流成本。迄今为止,雷神公司已经设计、建造和测试了三种不同的热机械单元 (TMU),以满足 Si:As 和其他系统的要求:AFRL 资助的高容量-RSP2 (HC-RSP2)、IRAD 资助的 LT-RSP2 和生产 LT-RSP2。