自从 Beaurepaire 等人发现超快退磁以来 [1],大量研究应用三温度模型 (3TM) 的变体来描述实验性超快磁化动力学。 [2–10] 通过引入瞬态电子、晶格和自旋自由度的有效温度(见图 1 d),3TM 使用三个耦合的微分方程来描述子系统之间的相互能量传递,为定量分析超快磁化动力学提供了一种直观的现象学方法。微观三温度模型 (M3TM) 改进了 3TM,通过 Elliott-Yafet 自旋翻转散射用磁化强度代替现象学自旋温度,考虑超快磁化动力学中的动量守恒。 [2] 此类公式与 Landau-Lifshitz-Bloch (LLB) 方程有关,其中与电子的耦合细节
*通讯作者:宾夕法尼亚州大学公园,宾夕法尼亚州16802,宾夕法尼亚州立大学物理学系克里斯蒂娜·约尔格; Kaiserslautern- Landau大学的物理系和研究中心Optimas,Kaiserslautern D-67663,德国,电子邮件:cjoerg@rptu.de。https://orcid.org/0000-0001-6187-0155 MariusJürgensen,宾夕法尼亚州大学公园,宾夕法尼亚州16802,美国宾夕法尼亚州立大学物理系MariusJürgensen;以及美国加利福尼亚州斯坦福大学斯坦福大学物理系。 https://orcid.org/0000-0001-7074-0002宾夕法尼亚州立大学宾夕法尼亚州公园,宾夕法尼亚州16802,宾夕法尼亚州立大学物理学系Sebabrata Mukherjee;印度班加罗尔印度科学学院物理系560012,印度。 https://orcid.org/0000-0003-1942-2521 Mikael C. Rechtsman,宾夕法尼亚州宾夕法尼亚大学公园,宾夕法尼亚州16802,宾夕法尼亚州立大学物理学系。 https://orcid.org/0000-0002-6909-8355https://orcid.org/0000-0001-6187-0155 MariusJürgensen,宾夕法尼亚州大学公园,宾夕法尼亚州16802,美国宾夕法尼亚州立大学物理系MariusJürgensen;以及美国加利福尼亚州斯坦福大学斯坦福大学物理系。https://orcid.org/0000-0001-7074-0002宾夕法尼亚州立大学宾夕法尼亚州公园,宾夕法尼亚州16802,宾夕法尼亚州立大学物理学系Sebabrata Mukherjee;印度班加罗尔印度科学学院物理系560012,印度。https://orcid.org/0000-0003-1942-2521 Mikael C. Rechtsman,宾夕法尼亚州宾夕法尼亚大学公园,宾夕法尼亚州16802,宾夕法尼亚州立大学物理学系。https://orcid.org/0000-0002-6909-8355https://orcid.org/0000-0002-6909-8355
生产的首个电池级LHM:在11月初的盛大开业之后,Vulcan Energy Resources宣布成功生产其在Frankfurt-Höchst的下游锂电解厂(CLEOP)在其下游锂电解厂(CLEOP)在Frankfurt-Höchst中成功生产的,这标志着首次完全集成了电池级LHM LHM的产品。Vulcan在Landau设施(Leop)中从地热设施(Leop)进行下游盐水的上游锂提取的整合,并在Cleop下游加工证明了其生产模型的可行性。电池级LHM将用于Vulcan的主要外部产品(包括Stellantis,Renault,LG和Umicore)的商业产品资格。在尚未建造的商业第一阶段,Vulcan计划每年提供24,000吨LHM,足以每年为约500,000 ev供电。
在石墨烯中,与量子大厅(QH)方向上的自旋和山谷自由度相关的近似SU(4)对称性在石墨烯Landau水平(LLS)的四重脱胶中反映了。相互作用和Zeeman效应打破了这种近似对称性并提高LLS的相应堕落性。我们研究了近似SU(4)对称的破裂如何影响位于超导体附近的石墨烯QH边缘模式的性质。我们展示了四倍变性的提升是如何定性地修改QH-螺旋导体异质结的运输特性。对于零LL,通过将边缘模式放置在靠近超导体的位置,从原则上讲,在存在较小的Zeeman Field的情况下,可以实现支撑Majoranas的一维拓扑超导体。我们估计了这种拓扑超导体的拓扑间隙,并将其与QH-Superconductor界面的性质相关联。
量子大厅(QH)效应,量子自旋大厅(QSH)效应和量子谷霍尔(QVH)效应是石墨烯中三个特殊的拓扑绝缘阶段。它们的特征是三种不同类型的边缘状态。这三个效应分别由外部磁场,固有的自旋轨道耦合(SOC)和应变诱导的假磁场引起。在这里,我们从理论上研究了这些效果并存并分析边缘状态如何在三个之间发展时。我们发现真实的磁场,伪磁场将在SOC能量差距上方竞争,而QSH效应几乎不受SOC能量差距的影响。边缘状态从QH效应或QVH效应到QSH效应的过渡直接依赖于Zeroth Landau级别的排列。使用边缘状态过渡,我们提出了类似于自旋场效应晶体管(Spin-Fet)的设备,并设计了Spintronics多向开关。
量子力学是现代物理学的基石,研究微观尺度上的物理现象。这是本科生量子力学的最高课程,将为学生提供广泛而全面的介绍和进一步学习的基础。涵盖的主题包括:三维量子力学。角动量。氢原子。朗道能级。自旋。全同粒子和自旋统计关系。克莱布希-戈登系数。时间无关的微扰理论及其应用:一维弱正弦势中的粒子动力学、能带结构、布洛赫定理、布里渊区、准动量、金属和能带绝缘体。时间相关微扰理论。费米黄金法则。绝热演化和贝里相。散射理论中的粒子波分析。玻恩近似散射振幅的色散关系。低能和共振散射。
背景。中子星被超强电磁场有效加速的超相对论粒子所包围。这些粒子通过曲率、同步加速器和逆康普顿辐射大量发射高能光子。然而,到目前为止,还没有任何数值模拟能够处理这种极端情况,即非常高的洛伦兹因子和接近甚至超过量子临界极限 4.4 × 109T 的磁场强度。目的。本文旨在研究旋转磁偶极子中的粒子加速和辐射反应衰减,其实际场强为 105 T 至 1010 T,这是毫秒和年轻脉冲星以及磁星的典型场强。方法。为此,我们在简化的 Landau-Lifshitz 近似中实现了一个精确的分析粒子推动器,包括辐射反应,其中假设电磁场在一个时间步长积分期间在时间上恒定而在空间上均匀。使用速度 Verlet 方法执行位置更新。我们针对时间独立的背景电磁场(如交叉电场和磁场中的电漂移以及偶极子中的磁漂移和镜像运动)对我们的算法进行了广泛的测试。最后,我们将其应用于真实的中子星环境。结果。我们研究了粒子加速以及辐射反应对插入毫秒脉冲星、年轻脉冲星和磁星周围的电子、质子和铁核的影响,并与没有辐射反应的情况进行了比较。我们发现最大洛伦兹因子取决于粒子种类,但与中子星类型的影响很小。电子的能量高达 γ e ≈ 10 8 − 10 9 ,而质子的能量高达 γ p ≈ 10 5 − 10 6 ,铁的能量高达 γ ≈ 10 4 − 10 5 。虽然质子和铁不受辐射反应的影响,但电子的速度却急剧下降,使其最大洛伦兹因子降低了四个数量级。我们还发现,在几乎所有情况下,辐射反应极限轨迹都与简化的朗道-利夫希茨近似非常吻合。
我们采用完全自洽的横向分辨 Hartree-Fock 近似,以数值方式处理近宏观样本尺寸的量子霍尔区域中较高朗道能级的电子配置。在低无序性下,我们发现空间分辨的条纹和气泡状电荷密度调制,并展示了它们如何根据填充因子出现。这些边界区域的微观细节决定了将电荷密度调制对齐为条纹或气泡的几何边界条件。使用非平衡网络模型模拟传输,在接近半填充的条纹区域中,注入电流的方向具有明显的各向异性。我们获得的条纹周期为 2.9 个回旋半径。我们的结果提供了对其在强磁场中后果的直观理解,并表明在长度尺度上研究时,整数量子霍尔区域中的许多粒子物理学占主导地位。
摘要:据报道,内嵌铝化物 RuAl 6 具有超导性,其 T c = 1.21 K。T c 处的归一化热容量跃变 Δ C/ γ T c = 1.58,证实了块体超导性。金兹堡-朗道参数 κ = 9.5 表明 RuAl 6 为 II 型超导体。与其结构类似物 ReAl 6(T c = 0.74 K)相比,探讨了 RuAl 6 的电子结构计算。根据晶体轨道哈密顿布居(- COHP)分析讨论了相的稳定性。两种材料 T c 的差异是由 RuAl 6 中发现的明显更强的电子-声子耦合引起的,这是反键相互作用明显更强的结果。另一种由铝团簇组成的化合物中超导性的出现可能扩大了临界温度与 Ga 团簇所示结构的相关性。■ 简介