了解促进转移播种早期事件的机制是开发减少转移的治疗方法的关键,这是与癌症相关死亡的主要原因。使用全动物筛查在癌症的基因工程小鼠模型中,我们已经确定了与转移相关的循环代谢产物。具体来说,我们将嘧啶尿嘧啶作为突出的转移相关代谢物。尿嘧啶是由表达尿苷磷酸酶-1(UPP1)的中性粒细胞产生的,癌症中嗜中性粒细胞的特异性UPP1表达增加。改变的UPP1活性会影响中性粒细胞表面上的粘附分子的表达,从而导致嗜中性肺前肺中性粒细胞运动降低。此外,我们发现表达UPP1的中性粒细胞抑制T细胞增殖,UPP1产物尿嘧啶可以增加细胞外微环境中的纤连蛋白沉积。始终如一,具有乳腺肿瘤的小鼠中UPP1的敲除或抑制会增加T细胞的数量,并减少肺中的纤连蛋白含量,并降低发展肺转移的小鼠比例。这些数据表明UPP1在肺中影响中性粒细胞的行为和细胞外基质沉积,并表明该途径的药理靶向可能是减少转移的有效策略。
*均等贡献摘要:RNA引导的核酸酶Cas9已解锁了通过靶向DNA裂解和通过靶向DNA结合来使基因组扰动基因组的强大方法,但是有限的生化数据妨碍了跨不同指导序列的目标序列的定量效果,以跨不同的指导序列进行定量模型。我们提供可伸缩的,基于测序的平台,用于高通量滤波器结合和裂解,然后对90个cas9 cas9核糖核蛋白(RNP)对35,047的35,047 On-Target DNA序列进行62,444个定量结合和裂解测定。我们观察到结合和裂解功效以及特异性在RNP中有很大差异。经典研究的指南通常具有非典型的特异性。围绕目标的序列上下文会显着影响CAS9的速率; CAS9 RNP可能会隔离有助于“校对”能力的非生产性状态中的目标。最后,我们将发现提炼成可解释的生物物理模型,该模型可预测各种目标序列扰动的结合和分裂的变化。
抽象背景:癌症染色体不稳定性的主要驱动力是复制应力,DNA复制的减慢或失速。尚不清楚如何连接复制应力和基因组不稳定性。蚜虫蛋白诱导的复制应力会在常见的脆弱部位诱导分裂,但是易于脆弱的确切原因,并且没有充分探索复制应力的急性基因组后果。结果:我们表征单个二倍体非转化细胞中的DNA拷贝数改变(CNA),这是由一个细胞周期在蚜虫或羟基脲存在下引起的。产生了多种类型的CNA,与不同的基因组区域和特征相关,观察到的拷贝数景观在蚜虫蛋白和羟基脲诱导的复制应力之间是不同的。将CNA与基因表达和单细胞复制时间分析的耦合细胞类型分析指向蚜虫中最复发的染色体尺度CNA的致病性大基因。这些在RPE1上皮细胞中的7号染色体上聚集在染色体上,但染色体在BJ成纤维细胞中。染色体臂水平CNA还会产生含有这些染色体的染色质和微核。结论:由复制应力驱动的染色体不稳定性通过局灶性CNA和染色体臂尺度的变化发生,后者仅限于很小的子集染色体区域,潜在地倾斜了癌症基因组的进化。复制应力的不同诱导者导致独特的CNA景观,从而提供了机会,从而得出了特定复制应力机械的拷贝数签名。单细胞CNA分析揭示了复制应力对基因组的影响,从而提供了对癌症中染色体不稳定性的分子机制的见解。
数字地形分析 (DTA) 包括一组使用数字高程模型 (DEM) 来模拟各种尺度的地球表面过程的工具。DEM 及其衍生产品是数字地形模型 (DTM) 的更大集合的一部分,用于各个领域,以模拟能量和物质在表面的流动。水文学家工具包中 DTM 的普遍性导致地形属性(例如坡度和上坡贡献区域)被广泛使用,以表征水和相关营养物质在景观中的移动方式。计算地形属性的算法现在已被编入所有商业地理信息系统 (GIS) 软件(例如 ArcGIS、Idrisi),用户只需按一下按钮即可绘制潜在地表水文流模式。虽然派生图层总是看起来很刺激,但现场水文学家经常提出这样的问题:DTM 通常只是有趣的空间模式,与预测实际水文行为没有太大关系吗?本文通过讨论 DTA 对于 21 世纪森林水文学从业人员的意义,批判性地回答了这个问题。自从早期的集水区降雨径流理论提出以来,人们就开始利用地形信息来更好地了解集水区的水文功能(Horton 1945 ;Hewlett 和 Hibbert 1967 )。然而,在桌面计算出现之前,人们使用集水区规模的属性(例如集水区的面积、长度、周长和地形起伏比(最大地形起伏除以最长流路长度))来研究水文行为,因为只有这些属性才能轻松地从等高线图中得出(Schumm 1956 )。虽然这些指标有助于解释不同流域之间水和泥沙产量的差异(Garcia-Martino´ 等人 1996 ),
抗病毒 DNA 胞嘧啶脱氨酶 APOBEC3A 和 APOBEC3B 是癌症突变的主要来源,它们催化胞嘧啶脱氨为尿嘧啶。APOBEC3A 优先靶向单链 DNA,对采用茎环二级结构的 DNA 区域具有明显的亲和力。然而,APOBEC3A 和 APOBEC3B 的详细底物偏好尚未完全确定,DNA 序列对 APO-BEC3A 和 APOBEC3B 脱氨酶活性的具体影响仍有待研究。在这里,我们发现 APOBEC3B 也选择性地靶向 DNA 茎环结构,它们与 APOBEC3A 脱氨的结构不同。我们开发了 Oligo-seq,这是一种基于体外测序的方法,用于识别促进 APOBEC3A 和 APOBEC3B 活性的特定序列环境。通过这种方法,我们证明了 APOBEC3A 和 APOBEC3B 脱氨酶活性受到目标胞嘧啶周围特定序列的强烈调控。此外,我们还确定了 APOBEC3B 和 APOBEC3A 的结构特征,这些特征决定了它们的底物偏好。重要的是,我们确定了肿瘤基因组内发夹形成序列中 APOBEC3B 诱导的突变与 APOBEC3A 突变的 DNA 茎环序列不同。总之,我们的研究提供了证据,表明 APOBEC3A 和 APOBEC3B 可以在癌症基因组中产生不同的突变景观,这是由它们独特的底物选择性驱动的。
1 Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Straße 24–25, 14476 Potsdam, Germany 2 Agrosphere Institutes (IBG-3), Research Center Jülich GmbH, 52425 Jülich, Germany 3 geo information in Environmental Planning Lab, Technical University Berlin, 10623 Berlin, Germany 4 Physical海德堡大学研究所,位于德国Neuenheimer Feld 226,69120 Heidelberg,5 GFZ-德国地球科学研究中心,水文学部分,电视台,14473 Potsdam,德国6日6地理研究所,Intrain和Intrain 52f,6020,6020,Auttract,6020,intranopic (HYWA),自然资源与生命科学大学(BOKU),Muthgasse 18,1190,维也纳,奥地利,奥地利8 UFZ -Helmholtz环境研究中心GmbH,监测与勘探技术部,Permoserstr。 15,04318莱比锡,德国1 Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Straße 24–25, 14476 Potsdam, Germany 2 Agrosphere Institutes (IBG-3), Research Center Jülich GmbH, 52425 Jülich, Germany 3 geo information in Environmental Planning Lab, Technical University Berlin, 10623 Berlin, Germany 4 Physical海德堡大学研究所,位于德国Neuenheimer Feld 226,69120 Heidelberg,5 GFZ-德国地球科学研究中心,水文学部分,电视台,14473 Potsdam,德国6日6地理研究所,Intrain和Intrain 52f,6020,6020,Auttract,6020,intranopic (HYWA),自然资源与生命科学大学(BOKU),Muthgasse 18,1190,维也纳,奥地利,奥地利8 UFZ -Helmholtz环境研究中心GmbH,监测与勘探技术部,Permoserstr。15,04318莱比锡,德国
fi g u r e 1的RRV和重组途径分析的视觉概述:(a)对于八个指标中的每个指标中的每个指标中的每个指标,其模拟的未来平均值与在参考条件下的最小值范围(n = 20,在此显示为分布),以评估它是否超过或超过可变性的参考范围(绿色); (b)对于每个单元,重组的路径是根据多少组成和结构指标超出其参考范围的,在四个指标中有三个指标中的三个指标的变化范围超出了参考范围,构成了弹性丧失。(c)世界地图显示了三个研究景观的位置以及森林条件和高程图(仅森林区域)。图片来源:大提顿 - Timon T. Keller; Berchtesgaden -Rupert Seidl; Shiretoko -Kureha F. Suzuki。地图线描绘了研究区域,不一定描绘了公认的国家边界。
对最近的人类基因组组装的比较分析突出了显著的序列差异,这种差异在着丝粒等多态性位点内达到顶峰。这引发了一个问题,即依赖人类参考基因组来准确分析来自实验细胞系的测序数据是否合适。在这里,我们提出了一种称为“同基因组参考”的新方法,该方法利用匹配的参考基因组进行多组学分析。我们为人类视网膜上皮细胞 (RPE-1) 生成了一个新的二倍体基因组组装,RPE-1 是一种广泛使用的非癌症实验室细胞系,具有稳定的二倍体核型,呈现出完全跨越着丝粒的分阶段单倍型和染色体水平支架。利用该组装体,我们表征了 RPE- 1 独有的单倍型解析基因组变异,包括一个稳定的标记染色体 X,其中 73.18 Mb 的 10 号染色体片段重复易位至该细胞系特有的微缺失端粒 t(X q ;10 q )。比较分析揭示了着丝粒区域内的序列多态性,包括所有染色体单倍型之间的意外遗传和表观遗传多样性。使用我们的组装体作为参考,我们重新分析了我们自己的和公开的 RPE-1 中生成的测序、甲基化和表观遗传数据,这些数据之前已使用非匹配和非二倍体参考基因组进行分析。我们的结果表明,同基因组参考可改善比对,将映射质量提高高达 85%,同时将错配减少一半,从而导致与着丝粒相关的峰调用发生显著变化。我们的工作代表了一个概念验证,展示了匹配的参考基因组在多组学分析中的应用,并在规模上为全面组装实验相关细胞系以广泛应用同基因组参考基因组奠定了基础。关键词:人类参考;二倍体基因组;从头组装;基因组参考;着丝粒组装;实验室细胞系;多组学分析;表观遗传学;人类多态性;实验细胞系;同基因组参考。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年2月14日发布。 https://doi.org/10.1101/2025.02.13.637346 doi:Biorxiv Preprint
摘要背景:利用最近开发的 tRNA 腺苷脱氨酶 (TadA8e 和 TadA9) 改造的高活性腺嘌呤碱基编辑器 (ABE) 表现出强大的碱基编辑活性,但引发了人们对脱靶效应的担忧。结果:在本研究中,我们对 ABE8e 和 ABE9 诱导的水稻 DNA 和 RNA 突变进行了全面评估。对用四种 ABE(包括 SpCas9n-TadA8e、SpCas9n-TadA9、SpCas9n-NG-TadA8e 和 SpCas9n-NG-TadA9)转化的植物进行全基因组测序分析表明,含有 TadA9 的 ABE 导致更多数量的脱靶 A 到 G (A>G) 单核苷酸变体 (SNV),而含有 CRISPR/SpCas9n-NG 的 ABE 导致水稻基因组中脱靶 SNV 总数更高。对携带 ABE 的 T-DNA 的分析表明,在 T-DNA 整合到植物基因组之前和/或之后可以引入靶向突变,在 ABE 整合到基因组之后会形成更多的脱靶 A>G SNV。此外,我们在 ABE 表达高的植物中检测到脱靶 A>G RNA 突变,但在 ABE 表达低的植物中未检测到。脱靶 A>G RNA 突变倾向于聚集,而脱靶 A>G DNA 突变很少聚集。结论:我们的研究结果表明 Cas 蛋白、TadA 变体、ABE 的时间表达和 ABE 的表达水平对水稻中的 ABE 特异性有影响,这为了解 ABE 的特异性提供了见解,并提出了除改造 TadA 变体之外增加 ABE 特异性的其他方法。