摘要 - 本研究介绍了创新的混合密码模型,该模型将蜂窝访问机制与基于晶格的加密算法无缝整合,旨在增强云安全性并解决新兴的量子威胁。混合模型代表了从传统的晶格加密方法中的重大飞跃,如综合模拟所证明的那样。与晶格加密的94.99%的成功率(2.93%)相比,它的可值得称赞成功率为90.15%,具有较低的可变性(标准偏差为1.72%)。在操作上,混合模型在提供一致的性能和更快的处理时间方面表现出色,从而使其成为加密操作的更有效选择。此外,其成本效益是显而易见的,运营成本范围从0.862到7.24微毛额,用于加密,并进行了0.871至7.29个微关。此外,两种模型的能源消耗都保持在1.35至3.46焦耳的实际范围内,突出了混合模型的适用性。这项研究强调了混合模型保护云计算环境免受高级量子攻击的潜力,提供了有前途的解决方案,该解决方案在性能,成本效益和能源效率之间取得了平衡。在一个量子计算对传统加密构成重大威胁的时代,混合加密模型是一种强大而实用的替代方案,能够强化云安全性,同时保持操作效率和负担能力。
量子游动自诞生以来就被用于开发量子算法,可以看作是通常电路模型的替代品;将稀疏图上的单粒子量子游动与线格上的双粒子散射相结合就足以执行通用量子计算。在这项工作中,我们解决了一类不具有平移不变性的相互作用的线格上的双粒子散射问题,恢复了 Bose-Hubbard 相互作用作为极限情况。由于其通用性,我们的系统方法为解决一般图上的更一般的多粒子散射问题奠定了基础,这反过来又可以设计不同或更简单的量子门和小工具。作为这项工作的结果,我们表明,当相互作用仅作用于线图的一小部分时,可以高保真地实现 CPHASE 门。
抽象添加剂制造通过增强组件强度并减少材料要求,彻底改变了结构优化。用于实现这些改进的一种方法是应用多晶格结构。这些结构的性能在很大程度上依赖于介质元素的详细设计。许多当前的方法使用数据驱动的设计来生成多晶格过渡区域,利用共同解决介质结构的几何形状和属性的模型。但是,尚不清楚将机械性能整合到生成多晶格插值的数据集中是否仅在几何以外是有益的。为了解决此问题,这项工作实现并评估了用于生成多晶格过渡区域的混合几何/属性机器学习模型。我们将该混合模型的结果与使用仅几何模型获得的结果进行了比较。我们的研究确定,合并物理特性减少了在潜在空间中解决的变量数量,因此提高了生成模型开发多晶格结构过渡区域的能力。
在这里,我们要求一些不同的东西:我们希望供奉献者说服verifier供供者知道一些东西。供者说服verifier的x∈X还不够,因此y = f(x)。应确信verifier fifier知道这种解决方案x。我有时会在此处称x为“证人”。甚至开始构建这样的证明系统,我们首先必须回答一个哲学上的问题:“知道某事?”意味着什么?更具体地说,图灵机器“知道某事”是什么意思?在希望构建“知识证明”之前,我们需要定义知识。在这种情况下,加密摄影师为“知识”提出了非常聪明,非常自然的定义。这是事后显而易见的那些定义之一,但在您看到它之前一点都不明显。这个想法是要说一个供者“知道x”,如果它是类似的定义,可能同样适用于定义人类知识。在足够剧烈的相互作用下,可以从摊子中提取X。特别是,我们会说,如果有一种有效的算法,可以从任何贵族p ∗中“提取”证人x,从而使verifier具有良好的可能性“提取”证人x,我们会说一个交互式证明具有知识。为简单起见,我们将自己限制在供者发送第一个消息的三个移动协议中。我们会说,该协议是否可以从这对接受的成绩单中提取证人,可以满足知识的声音。这些有时称为“ Sigma协议”。在这三个移动协议中,我们可以考虑运行P ∗ for-ward以获取一个接受的成绩单(V,C,Z),然后将P ∗重新打开,直到Verifirer向其发出挑战的那一刻,然后在另一个挑战中再次进行挑战,以获得第二个笔录(V,C c',z')。
摘要:光学超表面能够操纵超薄层中的光与物质的相互作用。与金属或电介质超表面相比,由电介质和金属纳米结构组合而成的混合超表面可以为系统中存在的模式之间的相互作用提供更多可能性。在这里,我们研究了通过单步纳米制造工艺获得的混合金属-电介质超表面中晶格共振之间的相互作用。有限差分时域模拟表明,在选定的几何参数发生变化时,Ge 内部波长相关吸收率中出现的模式避免交叉,这是强光耦合的证据。我们发现测量和模拟的吸收率和反射光谱之间具有良好的一致性。我们的超表面设计可以轻松纳入自上而下的光电器件制造工艺,可能的应用范围从片上光谱到传感。关键词:超材料、半导体、杂化、光电子学
摘要:在环境压力下的散装材料中的非常规超导性在分层酸奶和基于铁的家族外的3D过渡金属化合物中极为罕见。它主要与高度各向异性电子特性和准二维(2D)费米表面有关。迄今为止,基于CO的异国情调超导体的唯一已知示例是水合分层的钴酯,Na X COO 2·Y H 2 O,其超导性在Spin-1/2 Mott State附近实现。然而,这些材料中超导性的性质仍然是一个激烈争论的主题,因此,找到一类新的超导体将有助于揭开其非常规超导性的奥秘。在这里,我们报告了我们新合成的分层化合物Na 2 Cose 2 O的超导性在〜6.3 k处的发现,其中边缘共享的cose 6 cose cose 6 cose 2]层[Cose 2]层,具有完美的三角形三角形晶格。这是具有独特的结构和化学特性的第一个3D过渡金属氧源超导体。尽管其相对较低的t c,该材料表现出非常高的超导临界场,μ0h c2(0),远远超过了保利的顺磁性极限3-4。第一原理计算表明Na 2 Cose 2 O是负电荷转移超导体的罕见示例。■简介CO旋转中具有几何挫败感的这种含氧盐含量具有很大的潜力,作为实现非常规和/或高t C超导性的高度吸引人的候选人,超出了公认的Cu-和Fe基超导和基于FE的超导家族,并在低调的物理学和化学领域打开了一个新领域。
这是关于剑桥大学出版社最近发表的有限分布晶格的拓扑二元性理论的一本关于[1]的话题[1],作者将共同介绍。谈话的目的是概述这本书在教学和研究中的内容和潜在用途,并以我们可以在网络上投入的潜在有用的其他资源来向受众介绍。在本摘要的其余部分中,我们从书的序言中汲取了详细的概述,以便在会议介绍中介绍其内容。这本书是一门关于石头普里斯利二元理论的课程,其应用于逻辑和计算机科学的基础。我们的目标受众包括研究生和数学和计算机科学研究人员。本书的主要目的是为读者提供阅读和理解二元性研究及其应用所需的理论背景。我们的目的是说是教学的,而不是详尽的,而我们确实在了解该领域的内容时确实提供了技术细节。本书的一个独特特征是,除了为分布晶格开发一般双重性理论外,我们还展示了它如何应用于计算机科学基础中的许多领域,即模态和直觉逻辑,域理论和自动机理论。在这些领域的二元理论的使用使他们的基本数学理论有多少共同点。在本书的第一章中,我们将类别理论的使用降至最低。它还促使我们通过各种增强功能来升级对二元理论的处理,这些增强功能现在通常用于该领域的最新研究中。大多数这些增强功能都在分布晶格上使用运算符:仅保留一部分晶格结构的晶格之间的地图。,我们通过操作员对格子理论进行了教科书的讲述,并为他们提供了二元性,就像20世纪下半叶开发的那样。我们对该理论的解释还可以通过现在的经典应用来对待其几个,例如免费的分布晶格,商和子空间,含义类型的操作员,Heyting代数和布尔信封。然后,我们将结果设置为类别理论的更抽象和一般框架。这一发展还使我们能够展示普里斯特利的二元性在更一般的拓扑与秩序相互作用的框架中如何适合,而纳克宾(Nachbin)不久前就已经开发了。我们展示了由Stone,Priestley和其他人引入的各种具有和没有顺序的拓扑空间如何相互关联,以及它们与分布式晶格及其无限型框架的双重性。本书以二元理论对理论计算机科学的两种现代应用的扩展说明,即域理论和自动机理论结束。我们开发的领域理论是围绕三个单独的结果组织的:霍夫曼法律二元性;那些DCPO和域的表征分别属于石头双重性。以及艾布拉姆斯基(Abramsky)著名的1991年域理论,逻辑形式论文。我们在书中开发的二元性理论方法是由于Grigorieff和Pin的第一作者而在工作中起源于工作。它是围绕许多相关结果组织的,即:
a IHP–Leibniz-Institut fu¨r innovative Mikroelektronik,Im Technologiepark 25,15236 Frankfurt (Oder),德国 b Istituto Italiano di Tecnologia – Materials Characterization Facility,热那亚 16163,意大利 c CIC nanoGUNE BRTA,20018 Donostia-San Sebastia´n,巴斯克地区,西班牙。电子邮箱:b.martingarcia@nanogune.eu d IKERBASQUE,巴斯克科学基金会,48009 Bilbao,西班牙 † 可用的电子补充信息 (ESI):化学蚀刻过程中的 Te 晶体照片和所研究 Te 晶体蚀刻坑的光学图像;关于拉曼数据采集条件和硅 (100) 极化测试的对照实验;交叉配置中角度相关的线性偏振拉曼光谱测量;线性偏振拉曼光谱的拉曼张量分析;以及 (100) 和 (110) 平面的圆偏振拉曼光谱测量。请参阅 DOI:https://doi.org/10.1039/d3tc04333a
报告了用于制造液晶弹性体(LCE)晶格的集成设计,建模和多物质的3D打印平台,并报告了具有空间可编程的nematic Director订单和本地组成的均质和异质布局。根据其组成拓扑结构,这些晶格在其各自的近视转变温度上方和下方循环时表现出不同的可逆形状变形转换。此外,可以证明,在评估所有LCE晶格设计的实验观察到的变形响应与模型预测之间存在良好的一致性。最后,建立了一个反设计模型,并证明了以预测的变形行为打印LCE晶格的能力。这项工作开辟了新的途径,用于创建构建的LCE晶格,这些晶格可能会在能量散落结构,微流体泵送,机械逻辑和软机器人技术中找到潜在的应用。