Array using Neural Network with Levenberg–Marquardt (LM) and Bayesian Regularization (BR) Technique, 14th INTERNATIONAL (IEEE) CONFERENCE ONCOMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT) , July 6th - 8th, 2023, Venue: IIT Delhi, Delhi, India, Ghazala Ansari , Rupali Singh.
摘要:本文使用机器人技术和基于视觉的反馈控制,解决了葡萄树修剪的挑战,这是农业中至关重要且艰苦的农业任务。由于3D姿势估计和特征提取方面的挑战,藤蔓的复杂结构使视觉致密暗销。是基于迭代最接近点(ICP)点云对准和基于位置的视觉伺服伺服(PBV)的组合,提出了一种基于视觉的藤蔓修剪的新方法。在藤蔓修剪的PBV中比较了四个ICP变体:标准ICP,Levenberg – Marquardt ICP,点对平面ICP和对称ICP。该方法包括一个专用的ICP初始猜测,以提高对齐速度和准确性,以及在修剪位置生成参考点云的过程。实时实验是在配备了立体相机的Franka Emika操纵器上进行的,涉及在实验室条件下的三个真实葡萄藤。
摘要:手臂、手和指尖的活动功能和感觉信息的丧失妨碍了患者的日常生活活动 (ADL)。现代仿生假手可以弥补失去的功能并实现多自由度 (DoF) 运动。然而,由于传感器有限和缺乏稳定的分类算法,市售的假手通常具有有限的自由度。本研究旨在提出一种通过表面肌电图 (sEMG) 估计手指关节角度的控制器。用于训练的 sEMG 数据是使用商用 EMG 传感器 Myo 臂带收集的。提取时域中的两个特征并将其输入到具有外生输入的非线性自回归模型 (NARX) 中。使用 Levenberg-Marquardt 算法对 NARX 模型进行预选参数训练。与目标相比,模型输出的回归相关系数 (R) 在所有测试对象中均大于 0.982,信号范围为 [0, 255] 的任意单位时均方误差小于 10.02。研究还表明,所提出的模型可用于日常生活运动,具有良好的准确性和泛化能力。
摘要:进行实验,以获取有关模板打印转移效率的数据,并培训了基于机器学习的技术(人工神经网络)来预测该参数。实验中的输入参数空间包括五个不同级别的打印速度(在20至1120 mm/s之间)以及从0.34到1.69的模板孔的面积比。还研究了三种类型的无铅焊料糊,如下:3型(粒径范围为20-45 µm),4型4(20–38 µm),型5(10-25 µm)。输出参数空间包括打印沉积物的高度和面积以及相应的转移效率,这是沉积物粘贴体积与光圈体积的比率。最后,使用Levenberg -Marquardt培训算法对人工神经网络进行了经验数据。发现网络大小微调的最佳调整因子约为9,导致隐藏的神经元数为160。训练有素的网络能够以平均平均百分比误差(MAPE)低于3%的平均百分比误差(MAPE)来预测输出参数。但是,预测错误取决于输入参数的值,该值在本文中详细列出了。研究证明了机器学习技术在模具印刷过程的产量预测中的适用性。
本文研究了由于Jeffrey杂交纳米流体流动而导致的太阳能储能,该流通过多孔介质用于抛物线槽太阳能收集器。在悬浮水基传热液中,还遇到了石墨烯和银纳米颗粒的热疗法和布朗运动的机制。旋转的微生物具有在纳米流体混合物中向上移动的能力,从而增强了纳米颗粒的稳定性和悬浮液中的流体混合。管理方程式的数学建模使用质量,动量,能量,浓度和微生物浓度的保护原理。非相似变量被引入尺寸管理方程式,以获取非量纲的普通微分方程。实施现金和鲤鱼方法来求解非二维方程。还使用Levenberg Marquardt算法为非维度的方程开发了人工神经网络。对应于影响纳米流体流和传热的不同参数的数值发现。观察到热曲线会随着达西和福切氏症参数的升级而增强。和Nusselt数字随着Deborah数字和延迟时间参数的升级而增强。熵生成可以随着Deborah数字和延迟时间参数的增强而降低。太阳能是最好的可再生能源。它可以满足行业和工程应用增长的能源需求。
摘要:自动识别头部运动过程中的人类大脑刺激可能会为人机交互 (HCI) 带来重大进步,对严重残疾人群和机器人技术都有重要应用。本文提出了一种基于神经网络的识别技术,通过脑电图信号识别参与者在受到视觉刺激时的头部偏航旋转。目标是识别脑电活动与由参与者左手边/右手边的灯打开/关闭触发的头部运动之间的输入输出函数。该识别过程基于“Levenberg-Marquardt”反向传播算法。在十名参与者身上获得的结果跨越两个多小时的实验,显示了所提出的方法在识别与头部转动相关的脑电刺激方面的能力。对每个参与者的每个实验相关的脑电图信号进行初步分析。预测的准确性由同一文件的训练和测试试验之间的显著相关性证明,在最佳情况下,相关性达到 r = 0.98,MSE = 0.02。在第二次分析中,对一名参与者的 EEG 信号进行训练的输入输出函数由其他参与者的 EEG 信号进行测试。在这种情况下,低相关系数值表明,当对不同的受试者进行训练和测试时,分类器的性能会下降。
使用CO 2注入增强的石油回收(EOR)是有希望的,经济和环境益处是一种积极的气候变化方法。然而,CO 2注射的较低扫描效率仍然是一个挑战。CO 2 -FOAM注射已被提议作为一种补救措施,但其对特定储层的实验室筛查是昂贵且耗时的。在这项研究中,使用机器学习模型来预测CO 2-FOAM洪水期间的石油回收因子(ORF)。四个模型,包括通用回归神经网络(GRNN),具有Levenberg - Marquardt优化(CFNN-LM),具有贝叶斯正则化(CFNN-BR)(CFNN-BR)的级联向前神经网络的级联向前神经网络以及基于实验数据的实验数据,以贝叶斯正则化(CFNN-BR)(CFNN-BR)(CFNN-BR)(CFNN-BR)和极端梯度提升(XGBoost)。结果表明,GRNN模型的表现优于其他模型,总体平均绝对误差为0.059,R 2为0.9999。使用威廉姆斯图对GRNN Model的适用性域进行了验证,并对CO 2 -FOAM洪水项目进行了不确定性分析。这项研究的新颖性在于开发一种基于机器学习的方法,该方法在CO 2-FOAM实验中对ORF进行了准确且具有成本效益的预测。这种方法具有显着减少CO 2 -FOAM注入所需的筛查成本和时间的po态,从而使其成为更可行的碳利用和EOR策略。
摘要:本文旨在探讨四旋翼无人机的建模与控制方法。建模过程中采用机构建模与实验测试相结合的方式,特别对电机和螺旋桨进行了详细的建模。通过对四旋翼无人机机体结构和飞行原理的了解,采用牛顿-欧拉法对四旋翼无人机进行动力学分析,建立了小角度转动下的无人机数学模型。采用过程辨识器(PID)对其进行控制。首先采用PID控制模型的姿态角,在此基础上采用PID控制各个方向上的速度。然后,利用MATLAB对重心偏移的四旋翼飞行器的PID控制进行仿真。结果表明:在重心不发生偏移的情况下,俯仰角和滚转角可以共同控制5°,PID可以有效地控制控制量,并在较短的时间内达到预期的效果。对经典BP算法、经典GA-BP算法、改进GA-BP算法分别进行了训练,共150组训练数据,训练函数采用Levenberg-Marquardt(trainlm),性能函数采用均方误差(MSE)。在同样噪声的背景下,改进GA-BP算法的检测率最高,经典GA-BP算法次之,经典BP算法最低。