Loading...
机构名称:
¥ 1.0

使用CO 2注入增强的石油回收(EOR)是有希望的,经济和环境益处是一种积极的气候变化方法。然而,CO 2注射的较低扫描效率仍然是一个挑战。CO 2 -FOAM注射已被提议作为一种补救措施,但其对特定储层的实验室筛查是昂贵且耗时的。在这项研究中,使用机器学习模型来预测CO 2-FOAM洪水期间的石油回收因子(ORF)。四个模型,包括通用回归神经网络(GRNN),具有Levenberg - Marquardt优化(CFNN-LM),具有贝叶斯正则化(CFNN-BR)(CFNN-BR)的级联向前神经网络的级联向前神经网络以及基于实验数据的实验数据,以贝叶斯正则化(CFNN-BR)(CFNN-BR)(CFNN-BR)(CFNN-BR)和极端梯度提升(XGBoost)。结果表明,GRNN模型的表现优于其他模型,总体平均绝对误差为0.059,R 2为0.9999。使用威廉姆斯图对GRNN Model的适用性域进行了验证,并对CO 2 -FOAM洪水项目进行了不确定性分析。这项研究的新颖性在于开发一种基于机器学习的方法,该方法在CO 2-FOAM实验中对ORF进行了准确且具有成本效益的预测。这种方法具有显着减少CO 2 -FOAM注入所需的筛查成本和时间的po态,从而使其成为更可行的碳利用和EOR策略。

对碳实体的影响

对碳实体的影响PDF文件第1页

对碳实体的影响PDF文件第2页

对碳实体的影响PDF文件第3页

对碳实体的影响PDF文件第4页

对碳实体的影响PDF文件第5页

相关文件推荐

2023 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2025 年
¥4.0
2025 年
¥4.0
2022 年
¥1.0
2024 年
¥2.0
2025 年
¥5.0
2025 年
¥2.0
2024 年
¥1.0
2021 年
¥1.0
2025 年
¥2.0
2024 年
¥2.0
2024 年
¥6.0
2024 年
¥5.0
2024 年
¥5.0
2025 年
¥11.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥2.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0