退相干和门误差严重限制了最先进的量子计算机的能力。这项工作引入了一种量子化学参考状态误差缓解 (REM) 策略,该策略可以直接在当前和近期的设备上实现。REM 可以与现有的缓解程序一起使用,同时只需要最少的后处理,并且只需要一次或不需要额外的测量。该方法与底层量子力学假设无关,并且专为变分量子特征值求解器 (VQE) 而设计。在超导量子硬件上证明了小分子 (H 2、HeH + 和 LiH) 基态能量计算精度提高了两个数量级。深度超过 1000 个两量子比特门的噪声电路的模拟用于论证该方法的可扩展性。
卢森堡卫生研究所 (LIH) 和卢森堡卫生局 (LCSB) 的研究人员团队迎难而上,提供了一种新型、易于获取、经过验证的早期窗口血液生物标记物,可帮助诊断并影响 PD 的预后。这项研究明确了外周免疫系统紊乱与 PD 之间的联系,这种联系似乎在疾病的早期阶段尤为重要。他们的发现最近发表在顶级期刊《自然通讯》(Nature Communications) 上 (doi.org/10.1038/s41467-023-43053-0),标志着朝着开发更好的临床诊断方法迈出了重要一步:只需分析患者血液样本管中的循环免疫细胞,这种创新技术就可以在大约五小时内提供高度精确的答案。
a 转化神经科学,卢森堡大学系统生物医学中心 (LCSB),卢森堡,卢森堡 b 牛津大学生理学、解剖学和遗传学系,英国 c 牛津大学 Kavli 纳米科学发现研究所,英国 d 土耳其巴勒克埃西尔大学医学院医学生物学系 e 发育和细胞生物学,卢森堡大学系统生物医学中心 (LCSB),卢森堡,卢森堡 f 转化神经变性科“Albrecht-Kossel”,罗斯托克大学医学中心神经病学系,罗斯托克,德国 g 分子和功能神经生物学,卢森堡大学系统生物医学中心 (LCSB),卢森堡,卢森堡 h 吕贝克大学神经遗传学研究所,吕贝克,德国 i 卢森堡医院中心,卢森堡 j 横向转化医学,卢森堡健康研究所 (LIH),卢森堡
我们提出了一种方案,通过量子计算机上的统计抽样来构建相互作用电子系统的单粒子格林函数 (GF)。尽管电子自旋轨道的产生和湮灭算符的非幺正性使我们无法有选择地准备特定状态,但已证明量子比特可以进行概率状态准备。我们提供配备最多两个辅助量子比特的量子电路,以获得 GF 的所有组件。我们基于幺正耦合簇 (UCC) 方法对 LiH 和 H 2 O 分子的 GF 构建进行了模拟,通过比较 UCC 方法中的准粒子和卫星光谱以及全配置相互作用计算的光谱来证明我们方案的有效性。我们还通过利用 Galitskii-Migdal 公式来检查采样方法的准确性,该公式仅从 GF 中给出总能量。
可用设施和设备 22.3.1 RWY 31 配备: 跑道 31 配备: - - 仅 ILS CAT 1, - - 由单向白灯组成的 420 米 HI 进近坡道。一条长 420 米、由单向白灯组成的进场坡道 LIH。 RWY 13 未配备 ILS 或进近坡道。 13 号跑道未配备 ILS 或进近坡道。车道 22.3.2 交通车道 22.3.2 在低速车道 (LVP) 条件下: 在低速车道 (LVP) 下: - 可用的车道:A1。 - 可用车道:A1。可用的握持点:A1。 - 可用跑道前的等待点:A1。通讯 22.3.3 通讯 22.3.3 当 LVP 程序生效时,飞行员会通过 ATIS 收到通知。当 LVP 程序生效时,ATIS 会通知飞行员。 LVP 实施和结束标准 22.3.4 当能见度在 550 米至 400 米之间或云层 < 200 英尺时,LVP 有效。当能见度在 550 米至 400 米之间或云层高度小于 200 英尺时,LVP 有效。 LVP 持续有效,直到标准(RVR 和云层高度)被大幅超越。 LVP 持续有效,直到触发 LVP 的标准(RVR 和云层高度)被大幅超越为止。 - 抵达时无 LVP。 - 抵达时无 LVP。 - 在机动区域内,流通范围仅限于单个移动设备。 - 整个机动区域内仅限一辆车通行。照明 22.3.5 标志 22.3.5 RWY 标志:白天地面标志 - 跑道和转弯区域的边缘照明 - THR LIH。跑道标记:通过标记(白天) - 跑道上的侧灯和折返灯 - HI 中的阈值。其他照明:等待点 A1 的 RWY 保护灯 (Wig-Wag) - 义务面板 - TWY A1 边缘照明。其他照明:A1 跑道前等待点的跑道保护灯 (Wig-Wag) - 强制性标志 - TWY A1 侧灯。
摘要:我们提出了一种量子-经典混合变分算法,即量子轨道最小化方法(qOMM),用于获得厄米算子的基态和低激发态。给定表示本征态的参数化拟设电路,qOMM 实现量子电路来表示轨道最小化方法中的目标函数,并采用经典优化器根据拟设电路中的参数最小化目标函数。目标函数具有隐式嵌入的正交性约束,这使得 qOMM 可以对每个输入参考态应用不同的拟设电路。我们进行了数值模拟,试图使用 UCCSD 拟设电路在 STO-3G 基中寻找 H 2 、LiH 和由四个氢原子排列成方格的玩具模型的激发态。将数值结果与现有的激发态方法进行比较,qOMM 不太容易陷入局部最小值,并且可以通过更浅的假设电路实现收敛。
在从头算电子结构模拟中,费米子到量子比特的映射表示从费米子问题到量子比特问题的初始编码步骤。这项工作引入了一种物理启发的映射构建方法,可在模拟感兴趣的状态时显着简化纠缠要求。电子激发的存在驱动了我们映射的构建,从而减少了量子比特空间中目标状态的相关性。为了对我们的方法进行基准测试,我们模拟了小分子的基态,并观察到与使用传统映射的先前研究中的经典和量子变分方法相比,我们的性能有所增强。特别是在量子方面,我们的映射需要减少纠缠层数量,以实现 LiH、H 2 、( H 2 ) 2 、H ̸= 4 拉伸和苯的 π 系统的精度,使用 RY 硬件高效的假设。此外,我们的映射还为 N 2 分子的密度矩阵重正化群算法提供了增强的基态模拟性能。
人体表现出特殊的免疫细胞,称为T助手(Th)细胞,这对于介导有效的免疫反应至关重要。一种被称为Th17的TH细胞在保护胃肠道(GI)区域的衬里中起着至关重要的作用,有助于平衡肠道中的“友好”细菌,同时也捍卫有害细菌。这些免疫细胞产生一种称为白介素22(IL-22)的物质,该物质触发蛋白质的释放,该蛋白质可杀死有害的微生物并保护肠衬衬,免受某些细菌造成的损害。这有助于保持肠道障碍的强大和健康,从而确保我们的整体福祉。反应性氧自由基(ROS)的积累,通常称为氧化应激,已知会显着有助于肠道中与炎症相关的疾病。LIH的研究人员特别关注T细胞如何保护自己免受这些有害分子的影响,以及这如何影响胃肠道感染的结果。
摘要:近期量子设备有望彻底改变量子化学,但是使用当前嘈杂的中间尺度量子(NISQ)设备的模拟由于其对错误的敏感性很高,因此不实用。这激发了NISQ算法的设计,利用经典和量子资源。虽然有几个发展显示了地面模拟的有希望的结果,但将算法扩展到激发态仍然具有挑战性。本文介绍了受戴维森算法启发的两种具有成本效益的激发算法。我们将Davidson方法实施到量子自符合方程式统一耦合群集(Q-SC-EOM- UCC)兴奋状态方法适用于量子硬件。讨论,实施和测试了产生所需激发态的电路策略。通过模拟H 2,H 4,LIH和H 2 O分子的模拟,我们证明了所提出的算法(Q-SC-SC-EOM-UCC/Davidson及其变异变体)的性能和准确性。与古典戴维森方案类似,Q-SC-EOM-UCC/Davidson算法能够瞄准所需特征的少数激发态。
利用量子计算机研究量子化学是当今的一个重要的研究领域。除了广泛研究的基态问题外,激发态的确定在化学反应和其他物理过程的预测和建模中起着至关重要的作用。本文提出了一种基于非变分全电路的量子算法来获得量子化学哈密顿量的激发态谱。与以前的经典-量子混合变分算法相比,我们的方法消除了经典的优化过程,减少了不同系统之间相互作用带来的资源成本,实现了更快的收敛速度和更强的抗噪性,没有贫瘠的平台。确定下一个能级的参数更新自然取决于前一个能级的能量测量输出,并且只需修改辅助系统的状态准备过程即可实现,几乎不会引入额外的资源开销。本文给出了氢、LiH、H2O 和 NH3 分子算法的数值模拟。此外,我们还提供了一个示例