N. A. Dyer。“赤道几内亚中离散进化谱系的证据表明,采采曲板帕尔帕利斯·帕尔帕利斯(Palpalis palpalis)作为一种物种复合物存在”,分子生态学,08/2009,出版物
项目名称:研究口腔癌干细胞中JAK-STAT驱动可塑性的表观遗传机制的治疗价值项目描述:动态表型切换会导致谱系可塑性,从而使癌细胞中的肿瘤内异质性高,从而充当癌症和适应条件下的癌症的前提机制。因此,对谱系可塑性的机理理解与设计侵略性癌症的策略高度相关。该项目旨在研究JAK-STAT途径和组蛋白调节的作用,该项目负责口腔癌中细胞可塑性和药物耐受性。使用临床前模型将测试机制作为针对肿瘤内异质性的新型治疗靶标。我们正在寻找具有出色学术地位的有动力的人,他们有兴趣探索NIBMG在提到的职位上采取的这一倡议中的职业机会:
•基于2019-2020谱系II序列的共识•15个AA肽,每个池的24-28肽的重叠•2 µg/ml每个肽的刺激•250,000 pbmc每次反应
哺乳动物基因组中DNA甲基化的主要功能是抑制转座元素(TES)。在癌细胞中通常观察到的广泛的甲基化损失导致TE的表观遗传抑制丧失。衰老过程的特征是甲基甲基的变化。然而,这些表观基因组改变对沉默的影响及其功能后果尚不清楚。为了评估衰老中TES的表观遗传调节,我们在人类乳腺腔上皮细胞(LEPS)中介绍了DNA甲基化(LEPS),这是一种与年龄较大的乳腺癌有关的关键细胞谱系 - 来自年龄较大的乳腺癌。我们在这里报告说,几个TE亚家族在正常LEP中充当调节元素,并且这些子集的一部分显示出随着年龄的增长而显示一致的甲基化变化。在这些TES处的甲基化变化发生在谱系特异性转录因子结合位点,与谱系特异性的丧失一致。主要显示甲基化损失,而CpG岛(CGI)是Polycomb抑制性复合物2(PRC2)的靶标,显示衰老细胞中甲基化的增加。在衰老的LEP中,许多具有甲基化损失的TE都有乳腺癌样品中调节活性的证据。我们还表明,TES的甲基化变化会影响与腔乳腺癌相关的基因的调节。这些结果表明,衰老会导致TES的DNA甲基化变化,从而弥补了维持谱系特异性,并可能增加对乳腺癌的敏感性。
使用COL1A1在不同阶段的RNA染色,我们将心脏成纤维细胞分为四个发育阶段。通过分析来自两个小鼠菌株的18个阶段成纤维细胞的SCRNA-SEQ谱,我们确定了显着的异质性,从而保留了其前体细胞中的谱系基因表达。在主要成纤维细胞种群中,我们发现了各种细胞簇中WT1,TBX18和ALDH1A2基因的差异表达。谱系追踪研究表明,WT1-和TBX18阳性成纤维细胞源自相应的心外膜细胞。此外,使用有条件的基于DTA系统的消除,我们确定了成纤维细胞在早期胚胎和心脏生长中的关键作用,但在新生儿心脏的生长中却没有。此外,我们确定了细胞外基质基因和成纤维细胞 - 毛皮细胞配体 - 受体 - 受体相互作用的区域和阶段相关的表达。这种全面的理解阐明了心脏发育中的成纤维细胞功能。
摘要:血小板是主要在骨髓中产生的巨核细胞的末端后代,在血液稳态,凝结和伤口愈合中起关键作用。传统上,巨核细胞和血小板被认为是由多个离散的祖细胞(HSC)引起的,这些造血细胞(HSC)通过多个离散的祖细胞,并具有连续的,谱系限制的差异步骤。然而,最近的研究挑战了这种观点,该研究表明(1)某些HSC克隆有偏见和/或仅限于血小板谱系,(2)并非所有血小板都会产生遵循“典型”巨核细胞分化路径的造血性巨核细胞,以及(3)血小板输出量是稳定稳定性稳定稳定性稳定型Hematopoiesisis septecteale septectea。在这里,我们特别研究了体内谱系追踪研究提供了血小板生成的途径的证据,并研究了各种中间祖细胞群体的参与。我们进一步确定了确定这些可能替代途径的存在,角色和动力学所需的挑战。
在发育过程中,脑皮质中的神经干细胞(也称为径向神经胶质细胞(RGC))产生兴奋性神经元,然后产生迁移到嗅球(OB)的皮质大型神经元和抑制性神经元。了解这种谱系开关的机制对于揭示如何控制适当数量的不同神经元和神经胶质细胞类型的基础。我们和其他人最近表明,声音刺猬(SHH)信号传导促进了皮质RGC谱系开关以生成皮质少突胶质细胞和OB中间神经元。在此过程中,皮质RGC会产生中间祖细胞,以表达关键的神经胶质发生基因ASCL1,EGFR和OLIG2。EGFR +和Olig2 +皮质祖细胞的ASCL1表达和外观增加与从兴奋性神经发生转变为皮质中的神经胶质发生和OB间神经元神经发生。虽然SHH信号促进了发育中的脊髓中的Olig2表达,但该转录调节的确切机制尚不清楚。此外,尚未探索Olig2和EGFR的转录调节。在这里,我们表明,在皮质祖细胞中,包括PAX6和GLI3在内的多个调节程序,可以防止早熟表达Olig2,这是生产皮质少突胶质细胞和星形胶质细胞的基因。我们确定了控制皮质祖细胞中Olig2表达的多个增强剂,并表明调节olig2表达的机制在小鼠和人之间是保守的。我们的研究揭示了控制皮质神经干细胞谱系转换的进化保守的调节逻辑。
了解在小鼠植入前发展过程中驱动谱系决策的机制可以显着影响干细胞和生殖生物学的领域。对开发前三天的研究表明,小鼠胚胎的最初杀蛋白胚胎通过胚泡阶段采用三个细胞命运之一:滋养剂(未来胎盘),原始内胚层(未来的yolk sac sacedoderm)(未来的yolk saceddoderm)或表皮细胞(未来的胎儿和其他额外的额外额外的额外额外的组织)。值得注意的是,这三种细胞类型的最终比率在很大程度上是胚胎中不变的,表明存在鲁棒的调节机制。非常明显的是,在孕产妇环境之外提出的孵化器生长的植入前胚胎中甚至达到了谱系规范,这表明最关键的调节机制是胚胎的固有的。但是,培养条件影响胚胎的信号传导环境的可能性不能正式排除。
人类对新冠病毒的反应,导致了 SARS-CoV-2 变种的出现和传播。尽管如此,自大流行开始以来的近 2 年时间里,那些之前感染过或接种过疫苗的人凭借天然或疫苗诱导的免疫力,仍然对再次感染具有实质性的保护作用 [6]。2021 年 12 月 Omicron 变种的出现给免疫保护格局带来了重大变化。之前感染过或接种过疫苗的人不再受到 COVID-19 的保护 [6]。疫苗加强接种提供了一些针对 Omicron 变种的保护 [7,8],但保护程度不及原始疫苗针对 SARS-CoV-2 前 Omicron 变种的保护程度 [8]。Omicron 变种出现后,之前感染 Omicron 变种早期谱系可保护人们免受后续谱系的后续感染 [9],但这种保护似乎在几个月内就消失了 [10]。在大流行的 Omicron 阶段,疫苗诱导免疫的保护力在疫苗加强接种后的几个月内下降 [8]。
基础谱系特征的存在表示乳腺,膀胱和胰腺的超侵略性人腺癌。然而,维持这种异常细胞状态的生化机制知之甚少。在这里,我们进行了基于标记的遗传筛选,以搜索维持胰腺导管腺癌(PDAC)中基础身份所需的因素。这种方法揭示了Med12是该疾病基底细胞状态的强大调节剂。使用生化重构和表观基因组学,我们表明MED12通过桥接转录因子ΔNP63(基底谱系的已知主调节剂)通过介体复合物激活谱系特异性增强子元素来实现此功能。与这一发现一致,与缺乏基础特征的PDAC细胞相比,基底样PDAC的生长对MED12的损失非常敏感。综上所述,我们的遗传筛选显示了一种生化相互作用,该相互作用在人类癌症中具有基础认同,这可以作为肿瘤谱系指导的治疗剂的靶标。
