肾上腺素能受体(β2-ARS)(Prass等,2006)。β2-ARS在所有显着的免疫细胞亚型上密集表达,然后通过降低弹性媒介物的合成和释放来传达信号传导途径,并管理外围免疫系统是抑制性的,以抑制(Bosmann等,2012;Martín-Cordern-cordero and and parecrign and。 Hervé等人,2017年;Aaç等人,2018年),来自活化的巨噬细胞和淋巴细胞。这种抗炎性反应被认为是防止缺血后大脑严重和有害的炎症反应的补偿机制(Chamorro等,2007; Iadecola and Anrather,2011)。然而,抗炎性反应会增加对中风后全身感染的敏感性,尤其是肺炎。可以释放针对中枢神经系统抗原的旁观者自身免疫因子,这是由于肺炎引起的炎症而释放的,这可能会使中风患者的预后恶化。因此,预防中风相关的肺炎至关重要(Winklewski等,2014)。右美托咪定(DEX)是α2肾上腺素能受体(α2-ARS)的有效且高度选择性的激动剂。通过激活突触前α2-ARS,DEX通过防止NE释放核核核释放来降低交感神经活性(Jorm和Stamford,1993)。由于其防止NE释放的能力,DEX具有免疫保护品质(Wang等,2019)。dex通过预防小胶质细胞激活,降低神经蛋白的弱化反应并最大程度地减少神经元坏死和凋亡来保护大脑(Kim等,2017; Gao等人,2019年)。关于肺部炎症,研究人员发现,DEX通过多种抗炎性通道在肺组织中降低了炎症反应,包括胆碱能抗炎性系统和TLR4/NF-κB路径(Wu等,2013; Liu et al an flr4/nf-κB路径。进行本研究是为了确定dex对中风小鼠中脑和周围免疫状态的影响,并探索DEX是否会改善SAP的症状以及有益的神经元结局。
摘要:细胞隔室中不同生物逻辑过程的时空组织是朝着工程功能性人工细胞迈出的关键步骤。模仿人造细胞内部的受控双向分子通信仍然是一个明显的挑战。在这里,我们在合成微型室中提供了可编程膜的类似细胞器的DNA凝聚力之间可进行照片开关的分子传输。我们使用液滴微流体化学来通过液态液相分离在油中的液滴分离来制造膜的无融合DNA凝聚力,并利用内部DNA作为人工体细胞器,以通过光子调节的无效的生物细胞和生物局部转移生物核酸菌群来模仿细胞内通信。我们的结果突出了一个有前途的新途径,可以通过功能网络组装人造细胞。
图2。生物启发的Zn@C电极的制造以及腐蚀和氢的耐药性评估。(a)生物启发的Zn@C电极的SEM图像后24 h聚合和热解后,(b)生物启发的SEI层的横截面视图。(c)TEM图像和碳球涂层的相应元素映射。(d)在2 m ZnSO 4中裸露锌电极的腐蚀表面的SEM图像7天,(e)生物启发的Zn@C电极的腐蚀表面,(F)xrd xrd表征在裸露的Zn电极的腐蚀表面上,并在50个cycles the cycm cycm -2 cer in 1 ma cm -2之后,(g)cy cy cy cy in Zn电极和Zn@C电极基于两个电极细胞,(H)裸Zn和生物启发的Zn@C阳极的接触角。碳球的沉积可以限制在选定区域,例如在
在当今世界,对清洁能源的需求至关重要。从历史上看,水电、风能和太阳能等可再生能源提供了可持续的解决方案。光伏 (PV) 系统使用半导体光伏电池将阳光转化为电能,这种电池已经高效使用了 30 多年。光伏电池效率取决于辐照度(太阳光子强度)和温度。辐照度越高,效率越高,而温度越高,效率越低。尽管光伏系统输出电压较低,但可以使用 DC-DC 正输出超升 Luo 转换器进行优化,以满足负载要求,从而提高系统效率。太阳辐照度全天都在变化,影响光伏电池的输出。最大功率点跟踪器 (MPPT) 调整系统的工作点以保持峰值效率。本研究重点是设计 AI 控制器来管理 MPPT。我们使用三个数据集比较了人工神经网络 (ANN) 和循环神经网络 (RNN) 的性能。目标是确定用于优化太阳能系统的最有效 AI 控制器。
摘要肠道细菌调节阿尔茨海默氏病(AD)患者和动物模型的脑病理学;但是,基本机制尚不清楚。在这项研究中,用或不敲除IL-17A基因的3个月大的APP-转基因雌性小鼠用抗生素 - 供应剂TED或正常饮用水进行了2个月的治疗。抗生素处理几乎消除了所有肠道细菌,从而导致脾和肠道中表达IL-17A的CD4阳性T淋巴细胞的降低,并减少脑组织中细菌DNA的降低。肠道细菌的耗竭抑制了脑组织和小胶质细胞中的炎症激活,降低了大脑Aβ水平,并促进了APP-转基因小鼠大脑中ARC基因的转录,所有这些小鼠的影响都被IL-17A的不足消除了。可能是调节Aβ病理学的机制,肠道细菌的耗竭抑制了β-分泌酶活性,并增加了大脑或血脑屏障中ABCB1和LRP1的表达,这也因缺乏IL-17A而逆转。有趣的是,App-转基因小鼠和IL-17A敲除小鼠之间的杂交实验进一步表明,IL-17A的缺乏已经增加了血液脑屏障的ABCB1和LRP1表达。因此,肠道细菌的耗竭可通过IL-17A涉及的信号通路来减弱应用转基因小鼠的炎症激活和淀粉样病理学。我们的研究有助于更好地理解AD病理生理学中肠道轴,并突出了IL-17A抑制作用或肠道细菌的特异性消耗的其他猿潜力,从而刺激IL-17A表达T细胞的发展。
摘要 引言 神经性疼痛是脊髓损伤(SCI)的常见并发症之一,会减慢患者康复进程并导致生活质量下降。既往研究表明,对运动皮层(M1)进行重复经颅磁刺激(rTMS)可减轻SCI后神经性疼痛的平均疼痛程度和最严重疼痛程度。背外侧前额叶皮质(DLPFC)区域是rTMS的常见作用靶区。近期有少数研究发现DLPFC的rTMS可缓解SCI的神经性疼痛。与M1区域相比,DLPFC区域rTMS治疗在改善SCI患者神经性疼痛及疼痛相关症状方面的疗效尚不明确。因此,本研究旨在评估dLPFC vs M1对SCI后神经性疼痛患者进行rTMS治疗的非劣效性,为rTMS治疗SCI后神经性疼痛提供更多选择。方法与分析 招募50例脊髓损伤后神经性疼痛的受试者,随机分为DLPFC-rTMS组和M1-rTMS组,分别接受4周的rTMS治疗。除刺激部位不同外,两组rTMS治疗方案相同:10Hz,1250个脉冲,115%强度阈值,每天一次,每周五次,治疗4周。在治疗前、治疗第二周、治疗第四周和治疗结束后4周评估VAS、简化McGill疼痛问卷、脊髓损伤疼痛数据集、匹兹堡睡眠质量指数和汉密尔顿焦虑量表,并计算VAS变化。 伦理与传播 西南医科大学附属医院伦理委员会批准本次试验,编号为KY2020041。在核实符合纳入标准后,将向所有参与者提供书面知情同意书。研究结果将发表在同行评议出版物上。试验注册号为 ChiCTR2000032362。
MaizeCUBIC 是一个免费数据库,描述了玉米 CUBIC 群体(24 个创始种和 1404 个近交后代)的基因组变异、基因表达、表型和数量性状位点 (QTL)。该数据库不仅包含之前已鉴定的超过 1400 万个单核苷酸多态性 (SNP) 和 43000 个插入/缺失信息,还包含本研究中新鉴定的 660000 个结构变异 (SV) 和 600000 个新序列,代表了多样化群体的全面高密度变异图谱。基于这些基因组变异,该数据库将显示每个后代的镶嵌结构,反映亲本基因组之间的高分辨率重组。该数据库还包括在五个地点对亲本和后代测量的总共 23 个农艺性状,这些地点代表了中国玉米的主要种植区。为了进一步探索基因型-表型关系,采用了两种不同的全基因组关联研究 (GWAS) 方法来剖析 23 种农学性状的遗传结构。此外,还开发了基本局部比对搜索工具和引物设计工具,以促进后续分析和实验验证。所有原始数据和相应的分析结果都可以通过用户友好的在线查询和 Web 界面动态可视化以及可下载文件访问。这些数据和工具为玉米和其他作物的遗传和基因组研究提供了宝贵的资源。
摘要:为了诊断阿尔茨海默病 (AD),人们采用了磁共振成像等神经成像方法。深度学习 (DL) 在计算机视觉方面的最新进展进一步激发了对机器学习算法的研究。然而,这些算法的一些局限性,例如需要大量的训练图像和强大的计算机,仍然阻碍了基于机器学习的 AD 诊断的广泛使用。此外,大量的训练参数和繁重的计算使得 DL 系统难以与移动嵌入式设备(例如手机)集成。对于使用 DL 进行 AD 检测,目前大多数研究仅侧重于提高分类性能,而很少有研究获得更紧凑、复杂度更低、识别准确率相对较高的模型。为了解决这个问题并提高 DL 算法的效率,本文提出了一种用于 AD 分类的深度可分离卷积神经网络模型。本文使用深度可分离卷积 (DSC) 来代替传统的卷积。与传统神经网络相比,所提出的神经网络的参数和计算成本大大降低。与传统神经网络相比,所提出的神经网络的参数和计算成本显著降低。由于其低功耗,所提出的模型特别适合嵌入移动设备。实验结果表明,基于 OASIS 磁共振成像数据集的 DSC 算法在 AD 检测方面非常成功。此外,本文还采用了迁移学习来提高模型性能。使用两个训练有素的复杂网络模型 AlexNet 和 GoogLeNet 进行迁移学习,平均分类率分别为 91.40%、93.02%,功耗更低。
乳酸脱氢酶 (LDH) 是一种存在于许多组织中的普遍酶,细胞损伤后会释放到血液中 [8] 。在病毒感染的情况下,LDH 水平升高可以作为组织损伤和代谢应激的间接标志物,通常与疾病严重程度相关。虽然 LDH 本身可能无法直接代表整体免疫状态,但它可以提供有关人体对病毒损伤的反应和器官损伤可能性的宝贵见解 [9] 。另一方面,C 反应蛋白 (CRP) 是一种高度敏感的炎症标志物 [10] 。它在感染或组织损伤后的快速增加反映了先天免疫系统的激活 [11] 。因此,CRP 水平升高表明炎症过程正在持续,这是对 COVID-19 等病毒感染的免疫反应的一个重要方面 [12] 。 D-二聚体 (D-Di) 是凝血系统激活的标志物,在评估凝血和纤溶之间的平衡方面起着关键作用 [13] 。这种平衡的异常会导致高凝状态,这是包括 COVID-19 在内的严重病毒感染的常见并发症。通过监测 D-Di 水平,我们可以了解血栓形成和其他凝血相关并发症的风险,这对于免疫功能低下的患者尤其重要 [14] 。
勃起功能障碍(ED)被定义为阴茎持续无法实现和/或保持勃起的性生活,是泌尿科中最常见的疾病之一(1)。尽管Ed不会对生命构成威胁,但它对社会构成了重大的安全隐患。 它不仅会影响患者的身心健康,而且会给性伴侣带来极大的困扰,从而导致患者及其伴侣的生活质量下降,家庭中的不和谐,更认真地,工作生产力的下降,家庭暴力的提高以及医疗负担的增加。 与心血管危险因素高度相关,例如高脂血症,糖尿病和血压异常。 先前的研究发现,ED和心血管疾病的发病机理基本上是相同的,均以血管内皮功能障碍为中心,最终导致血管性动脉粥样硬化(2-4)。 因此,ED和心血管疾病具有共同的危险因素。 脂质,包括总胆固醇(TC),甘油三酸酯(TG),低密度脂蛋白(LDL)和高密度脂蛋白(HDL),在此过程中起着至关重要的作用。 烟酸,他汀类药物,纤维和新型脂质降低药物通常用于治疗高脂血症(5-8)。 有临床证据表明,降脂药物疗法可以显着改善由高脂血症引起的有机ED患者的勃起功能(9,10)。 几个荟萃分析也显示了相似的结论(11,12)。 近年来,药物靶标MR分析已成为有效的工具。尽管Ed不会对生命构成威胁,但它对社会构成了重大的安全隐患。它不仅会影响患者的身心健康,而且会给性伴侣带来极大的困扰,从而导致患者及其伴侣的生活质量下降,家庭中的不和谐,更认真地,工作生产力的下降,家庭暴力的提高以及医疗负担的增加。与心血管危险因素高度相关,例如高脂血症,糖尿病和血压异常。 先前的研究发现,ED和心血管疾病的发病机理基本上是相同的,均以血管内皮功能障碍为中心,最终导致血管性动脉粥样硬化(2-4)。 因此,ED和心血管疾病具有共同的危险因素。 脂质,包括总胆固醇(TC),甘油三酸酯(TG),低密度脂蛋白(LDL)和高密度脂蛋白(HDL),在此过程中起着至关重要的作用。 烟酸,他汀类药物,纤维和新型脂质降低药物通常用于治疗高脂血症(5-8)。 有临床证据表明,降脂药物疗法可以显着改善由高脂血症引起的有机ED患者的勃起功能(9,10)。 几个荟萃分析也显示了相似的结论(11,12)。 近年来,药物靶标MR分析已成为有效的工具。与心血管危险因素高度相关,例如高脂血症,糖尿病和血压异常。先前的研究发现,ED和心血管疾病的发病机理基本上是相同的,均以血管内皮功能障碍为中心,最终导致血管性动脉粥样硬化(2-4)。因此,ED和心血管疾病具有共同的危险因素。脂质,包括总胆固醇(TC),甘油三酸酯(TG),低密度脂蛋白(LDL)和高密度脂蛋白(HDL),在此过程中起着至关重要的作用。烟酸,他汀类药物,纤维和新型脂质降低药物通常用于治疗高脂血症(5-8)。有临床证据表明,降脂药物疗法可以显着改善由高脂血症引起的有机ED患者的勃起功能(9,10)。几个荟萃分析也显示了相似的结论(11,12)。近年来,药物靶标MR分析已成为有效的工具。但是,一些学者发现,高脂血症的患者在使用降低脂质药物期间可能会降低睾丸激素水平,这反过来又可能导致ED发生。此外,一些研究表明他汀类药物可能通过影响自主神经功能或心理因素而间接导致ED的发生(13)。随机对照试验(RCT)是确定药物效率和不良反应的标准方法。但是,目前缺乏降脂药物和ED之间的大规模随机对照试验。降低脂质药物对ED和性激素水平的发生的影响尚不清楚,需要进一步探索。随着全基因组关联研究(GWAS)的日益普及,门德尔随机化(MR)可能是用于解决问题的RCT研究的有效替代方法。由于遗传变异(等位基因)是在减数分裂过程中随机分配的,因此MR研究的参与者根据等位基因的存在“随机”。这类似于随机对照试验,该试验将参与者随机分配到实验治疗组或对照组(14、15)。因此,MR分析的优点是,与其他研究方法相比,MR分析不易受到混杂因素的影响。它用于推断针对蛋白质编码基因,拮抗剂,激动剂或抑制剂对疾病风险的药物的影响(16)。该工具对破译药物治疗的潜力和促进药物开发非常有帮助。