元基因组组件和后处理完整数据集。使用hifiasm-meta和metamdbg组装了三个土壤中每一个的组合数据集。使用PACBIO HIFI-MAG-PIPELINE(V2+)3处理每个结果的重叠群集,该组件执行了长阅读特定的binning,QC和分类学注释步骤。我们评估了针对不同质量类别生产的MAG数量,包括单纤维高质量(SC- HQ)MAG,高质量(HQ)MAGS和中等质量(MQ)MAGS。我们显示了每个样品中最佳组装方法的结果。
1。冯等人。2022。高保真长读的元基因组组装,用hifiasm-meta读取。自然方法,19:671–674。2。Benoit等。2024。使用MetAMDBG的长期准确读取的高质量元基因组组件。 自然生物技术,https://doi.org/10.1038/s41587-023-01983-6 3。 Chklovski等。 2023。 checkm2:一种使用机器学习评估微生物基因组质量的快速,可扩展和准确的工具。 Biorxiv,https://doi.org/10.1101/2022.07.11.499243 4。 Kang等。 2019。 metabat 2:一种自适应分解算法,用于元基因组组件的稳健有效基因组重建。 peerj,7:e7359。 5。 Pan等。 2023。 semibin2:自我监督的对比学习可以为短而长阅读的测序提供更好的磁磁。 生物信息学,39:I21 – I29。 6。 Sieber等。 2018。 通过消除,聚合和评分策略从宏基因组中恢复基因组。 自然微生物学,3:836–843。 7。 Chaumeil等。 2019。 GTDB-TK:一种将基因组与基因组分类学数据库进行分类的工具包。 生物信息学,35:1925-1927。使用MetAMDBG的长期准确读取的高质量元基因组组件。自然生物技术,https://doi.org/10.1038/s41587-023-01983-6 3。Chklovski等。2023。checkm2:一种使用机器学习评估微生物基因组质量的快速,可扩展和准确的工具。Biorxiv,https://doi.org/10.1101/2022.07.11.499243 4。Kang等。 2019。 metabat 2:一种自适应分解算法,用于元基因组组件的稳健有效基因组重建。 peerj,7:e7359。 5。 Pan等。 2023。 semibin2:自我监督的对比学习可以为短而长阅读的测序提供更好的磁磁。 生物信息学,39:I21 – I29。 6。 Sieber等。 2018。 通过消除,聚合和评分策略从宏基因组中恢复基因组。 自然微生物学,3:836–843。 7。 Chaumeil等。 2019。 GTDB-TK:一种将基因组与基因组分类学数据库进行分类的工具包。 生物信息学,35:1925-1927。Kang等。2019。metabat 2:一种自适应分解算法,用于元基因组组件的稳健有效基因组重建。peerj,7:e7359。5。Pan等。2023。semibin2:自我监督的对比学习可以为短而长阅读的测序提供更好的磁磁。生物信息学,39:I21 – I29。6。Sieber等。 2018。 通过消除,聚合和评分策略从宏基因组中恢复基因组。 自然微生物学,3:836–843。 7。 Chaumeil等。 2019。 GTDB-TK:一种将基因组与基因组分类学数据库进行分类的工具包。 生物信息学,35:1925-1927。Sieber等。2018。通过消除,聚合和评分策略从宏基因组中恢复基因组。自然微生物学,3:836–843。7。Chaumeil等。 2019。 GTDB-TK:一种将基因组与基因组分类学数据库进行分类的工具包。 生物信息学,35:1925-1927。Chaumeil等。2019。GTDB-TK:一种将基因组与基因组分类学数据库进行分类的工具包。生物信息学,35:1925-1927。
微生物群落中的土壤中的微生物群落仍然在很大程度上未知,尽管它们在温室气体的循环中起着重要作用。在这里,我们报告了从挪威北部Rásttigáisá的矿物苔原土壤中回收的59种非冗余元基因组组装基因组(MAGS)。通过根据四核苷酸频率和差异覆盖范围来通过聚类重叠群来获得MAG,并进行手动策划以去除具有外围GC含量和/或平均覆盖率的重叠群。大多数MAG被分配到细菌门念珠菌(n = 12),verrucomicrobiota(n = 10)和酸眼杆菌(n = 9)。所有古细菌(n = 4)属于硝基果酸念珠菌(Themoproteota)。59Rásttigáisámags扩大了我们对苔原微生物组的多样性和生态作用的了解。
有证据表明,肠道微生物组的产后发育有助于儿童营养不良1-4。在这里,我们分析了来自微生物组指导的互补食品(MDCF-2)的随机对照试验的生物测量,该试验与在12-18个月大的班加拉德岛(12-18个月大的邦格拉德郡儿童中)相比,与热量更密集的常规辅助食品相比,其体重增加率较高。We reconstructed 1,000 bacterial genomes (metagenome-assembled genomes (MAGs)) from the faecal microbiomes of trial participants, identified 75 MAGs of which the abundances were positively associated with ponderal growth (change in weight-for-length Z score (WLZ)), characterized changes in MAG gene expression as a function of treatment type and WLZ response, and quantified carbohydrate MDCF-2和粪便中的结构。结果表明,与WLZ正相关的两个Prevotella copri mag是MDCF-2诱导的代谢途径表达的主要贡献者,该代谢途径涉及使用MDCF-2的成分聚糖。The predicted specificities of carbohydrate-active enzymes expressed by their polysaccharide- utilization loci are correlated with (1) the in vitro growth of Bangladeshi P. copri strains, possessing varying degrees of polysaccharide-utilization loci and genomic conservation with these MAGs, in defined medium containing different purified glycans representative of those in MDCF-2, and (2)试验参与者中粪便碳水化合物结构的水平。这些关联表明,通过与生长相关的细菌分类群代谢的MDCF中鉴定生物活性聚糖结构将有助于指导有关其在急性营养不良儿童中使用的建议,并能够开发出其他配方。
摘要 沿海食草鱼类以大型藻类为食,这些藻类随后被其消化道中的微生物降解。然而,关于进行这种降解的微生物群的基因组信息很少。本研究通过计算机模拟研究碳水化合物活性酶和硫酸酯酶序列,探索了 Kyphosus 胃肠道微生物共生体协同降解和发酵红、绿和棕色大型藻类中的多糖的潜力。从先前描述的 Kyphosus 肠道宏基因组和新测序的生物反应器富集物中回收宏基因组组装基因组 (MAG) 揭示了 Kyphosus 肠道中主要微生物类群之间的酶活性差异。回收的 MAG 中用途最广泛的是来自拟杆菌门,其 MAG 中含有能够分解各种藻类多糖的酶集合。 Bacillota(Vallitalea 属)和 Verrucomi crobiota(Kiritimatiellales 目)基因组的独特酶和预测降解能力凸显了多个门的代谢贡献对拓宽多糖降解能力的重要性。很少有基因组含有单独完全降解任何复杂硫酸化藻类多糖所需的酶。来自不同分类群的 MAG 之间合适酶的分布,以及在候选酶中广泛检测到信号肽,与这些碳水化合物的协同细胞外降解相一致。这项研究利用基因组证据揭示了 Kyphosus 共生体在酶和菌株水平上尚未开发的多样性及其对大型藻类分解的贡献。生物反应器富集为降解和发酵过程提供了基因组基础,对于将从该系统获得的知识转化为水产养殖和生物能源领域至关重要。
SMQ是出于公认的Meddra用户社区的需求,以帮助识别和检索安全数据。原始的Meddra特殊搜索类别(SSC)是出于类似目的而用于类似目的的,但是经过数年的使用,生物制药社区(监管机构和行业)得出结论,这些工具没有充分满足需求。在响应中,MEDDRA维护和支持服务组织(MSSO)于2002年初开始开发MEDDRA分析组(MAGS)。mags被定义为从MEDDRA层次结构的任何级别(通常是LLT)以及与MAG名称定义的医疗状况或感兴趣的领域相关的任何级别的术语集合,包括符号,症状,症状,身体发现,实验室和其他物理学测试数据以及与医疗状况相关的情况或与医疗状况相关的领域。
SMQ是出于公认的Meddra用户社区的需求,以帮助识别和检索安全数据。原始的Meddra特殊搜索类别(SSC)是出于类似目的而用于类似目的的,但是经过数年的使用,生物制药社区(监管机构和行业)得出结论,这些工具没有充分满足需求。在响应中,MEDDRA维护和支持服务组织(MSSO)于2002年初开始开发MEDDRA分析组(MAGS)。mags被定义为从MEDDRA层次结构的任何级别(通常是LLT)以及与MAG名称定义的医疗状况或感兴趣的领域相关的任何级别的术语集合,包括符号,症状,症状,身体发现,实验室和其他物理学测试数据以及与医疗状况相关的情况或与医疗状况相关的领域。
图1。Moshpit和示范分析的概述。(a)当前分析工作流的示意图。对Kaiju的分类注释得到了原始阅读的支持,并且可以将Kraken 2应用于对原始读取,重叠群或脱封的MAGS进行分类。用蛋酒贴剂的功能注释可用于重叠群或(解换)mags。(b)塔拉海洋数据集的重新分析。该地图描绘了全球收集样品的香农多样性,对四个位置的缩放视图显示了跨样本深度的分类学分配。bray-curtis主坐标散点图突出了深海样品之间的组成相似性。(C-D)基于读取(C)和基于MAG的可可分析(D)在发酵过程中表现出一致的多样性下降,并伴随着功能基因谱的变化。
一氧化二氮(N 2 O)是一种具有臭氧破坏潜力的温室气体,通过将N 2 O还原酶(NOSZ)催化的微生物还原为二氮的微生物减少来减轻。具有NOSZ活性的细菌已在pH pH中进行了研究,但低pH n 2 o的微生物学仍然难以捉摸。在波多黎各的Luquillo实验林中收集了热带森林土壤,并以低(0.02 mm)和高(2mm)N 2 O评估的n 2 O减少pH 4.5和7.3的n 2 O评估的n 2 O n 2 o。所有消耗n 2 o的缩影,滞后时间长达7个月,在2 mm n 2 o的缩影中观察到。比较元基因组分析表明,在两个N 2 O喂养方案下,若二环科在环状菌道中占主导地位。在pH 4.5时,peptococaceae在高N 2 O中占主导地位,而低N 2 O微型粒子中的杂种细菌科。从n 2 O还原的微型启发中回收的十七个高质量的元基因组组装基因组(MAG)具有NOS操纵子,所有八个MAGS均来自含有NOSZ型的酸性微观元素,含有NOSZ类型NOSZ和缺乏亚硝酸盐还原酶基因(NIRS / K)。从pH 4.5缩影中回收的八个MAG中的五个代表了新的分类单元,表明在酸性热带土壤中存在未开发的N 2 O还原多样性。对pH 3.5–5.7土壤元素组数据集的调查显示,NOSZ基因通常发生,这表明酸性土壤中N 2 O的降低潜力的广泛分布。