摘要:到目前为止,A15 NB 3 Si是在高压(〜110 GPA)下产生的唯一“高”温度超导体,该温度已成功地将其带回了在亚稳态条件下的房间压力条件。基于当前的极大兴趣,他们试图在高压下产生的室压高温超导体,我们重新爆炸地压缩了A15 NB 3 SI及其从Tetragonal NB 3 Si产生的生产。首先,在爆炸性压缩的A15 NB 3 Si材料上进行了高达88 GPA的钻石砧细胞压力测量,以跟踪T C作为压力的函数。t c在88 GPA时被抑制至〜5.2 k。然后,使用A15 NB 3 Si的这些T C(P)数据,在室温下(在5 K时在5 K时升高到120 GPa)在四方NB 3 Si上施加了高达92 GPA的压力。电阻率的测量结果没有任何A15结构产生的迹象。 e。没有A15 NB 3 Si的超导特征的迹象。这与四方NB 3 Si的爆炸性压缩(高达P〜110 GPA)相反,后者在1981年的Los Alamos国家实验室实验中产生了50-70%A15材料,在环境压力下T C = 18 K。这意味着由于爆炸性压缩而引起的伴随的高温(1000 O C)对于成功驱动四方的反应动力学是必不可少的。我们的理论计算表明,A15 NB 3 Si具有焓和四方结构,在100 GPa时为70 MeV/AtoM较小,而在环境压力下,四方相的焓低于A15相位的A15相位为90 MEV/ATOM。事实是,在室温下“退火”了A15爆炸性压缩材料39年没有效果表明,缓慢的动力学可以在很长一段时间内在环境条件下稳定高压亚稳态,即使对于90 MEV/原子的大驱动力也是如此。
方法深度剂量(PDD)和传输测量值是在Varian TrueBeam加速器上进行的。通过CT扫描(Toshiba Aquilon)和Alderson-Rando Head Phantom的CT扫描(Toshiba Aquilon)和光学成像(Einscan Pro 2X)获得了用于设备设计的表面轮廓。该设备是在Autodesk Meshmixer软件中建模的3D,并使用Bilby3D TPU和Colorfabb Bronzefill填充剂使用Rish3D Pro2加上FDM打印机生产。使用Varian Eclipse TPS实施了治疗计划,并使用Gafchromic EBT3纤维进行了验证。结果,印刷的TPU在质量和相对电子密度方面表现出与常规推注相似的放射学特性。需要大约10毫米的印刷屏蔽才能将相对剂量减少95%,而9 MeV梁则需要15毫米的9 MeV梁。创建了一个组合的推注/屏蔽装置,初始结果显示幻影可接受。结论TPU和金属纤维均表现出适当的放射学特性,目的是将其作为推注和屏蔽材料在下部电子束能量内用作。使用一种新型生产方法,两种材料都成功地纳入了组合的推注和屏蔽装置中。
SEP 能量从超热能(几千电子伏)到相对论能(质子和离子为几千兆电子伏)对空间环境表征具有重要影响。它们与太阳耀斑和 CME 驱动的冲击波一起从太阳发射。SEP 事件构成严重的辐射危害,对依赖航天器的现代技术以及太空中的人类构成威胁。此外,它们还对航空电子设备和商业航空构成威胁。因此,必须制定缓解程序。HESPERIA H2020 EU 项目开发了新型 SEP 事件预测工具,并高度依赖于这些工具来缓解 SEP 事件。这些预测工具以及针对它们所预测事件的科学研究自然存在一些共同的局限性,例如基础数据的可用性和质量。可以说,空间天气应用最重要的数据源之一是 1995 年发射的 NASA/ESA SOHO,它自 1996 年以来一直绕拉格朗日点 L1 运行。该航天器的科学有效载荷由几台远程和现场仪器组成,包括 EPHIN,这是一台视场约为 83 的粒子望远镜,几何因子为 5.1 cm2sr,可测量能量在 0.25 至 10.4 MeV 之间的电子以及能量范围在 4.3 至 53 MeV/核子以上的质子和氦
2.4 n/cm 2。已通过辐照后拉伸试验测量了 700 C 下的总伸长率(讨论表 1),应变率为 5X10 -a rain -1。表格分析表明,在 1.2 和 1.9X1021 n/em ~ 的快速通量之间,总伸长率下降趋于平稳,E>0.1 MeV,在大于 10 '~ n/em" 的快速通量下辐照的样品的拉伸试验正在进行中,并将检查此水平。
摘要 非弹性中子散射 (INS) 是研究固体振动动力学的非常强大的工具。田纳西州橡树岭 SNS 的 VISION 光谱仪在低能量传输下的总通量比其前代产品高出 100 倍,并且具有前所未有的灵敏度。我们将研究 VISION 在 INS 中现在所能达到的极限。从在几分钟内确定可发表质量的 INS 光谱(对于克量范围内的样品),测量毫克范围内样品的信号到直接测定吸附在功能化催化剂上的 2 mmol CO 2 的信号。最后,我们将讨论面临的主要挑战,特别是通过计算机建模和人工智能/机器学习等实现数据分析和解释的自动化方法。 关键词:非弹性中子散射,计算机建模,数据分析 1.简介 VISION 光谱仪位于田纳西州橡树岭散裂中子源 (SNS) 的光束线 16b (BL 16b) 上。VISION 非常独特,因为在大多数情况下,数据分析需要使用 DFT 建模和软件将这些计算机模型转换为可以直接与实验数据进行比较的合成光谱。VISION 是一种间接几何非弹性中子散射光谱仪,在同类仪器中拥有最高的通量和分辨率。主飞行路径距离环境温度下的解耦水慢化剂 16 米 [1]。次要飞行路径为 0.73 米。图 1 所示的次级光谱仪有一个分析器,该分析器由 347 个单晶热解石墨 (PG 002) 晶体(每个晶体面积为 1 cm2)的参数阵列组成,可将散射光束聚焦到 3 个氦管上的一小块区域内。分析器和探测器之间有一个切片铍块,楔块之间有镉片隔开。这些铍滤光片可消除晶体分析器不需要的𝜆/𝑛 反射,起到旁路滤光片的作用。总能量传输范围为 -2 meV 至 1000 meV,并跨越弹性线。对于 5 meV 以上的能量传输,这种仪器的仪器分辨率几乎是能量传输的一小部分 [2]:∆𝜔𝜔 ⁄ ~1.5% (1) 在弹性线上,分辨率为 120 µeV。
图S6:单层WS 2的拉曼和PL光谱(样品2)。(a)室温下H-Bn / WS 2 / H-BN样品2的拉曼光谱,激发激光波长为514 nm,功率为3 mW。在拉曼光谱中,A 1G和E 2G模式分别定位在419 cm -1(52 MeV)和359 cm -1(44 MeV)(用虚线表示)。单层WS 2可以从A 1G和E 2G线之间的拉曼移位差确定。将最强的拉曼峰在352 cm-1处归因于二阶拉曼模式2 la。(b)具有激发激光波长为532 nm的极化解析的拉曼光谱,第一阶仅在SCP配置中可见1G模式,而E 2G模式仅在OCP配置中观察到E 2G模式。(c)PL光谱在恒定激发能力为10 µ W处的温度演化。在290和180 K时很好地观察到了A-Exciton(X)和Trion(T)。随着温度的降低,激子和TRION线转移到更高的能量(蓝移),并且A-Exciton的相对峰强度降低。在78和12 K时,局部激子(L)出现,而A-Exciton消失了。这些光谱特征与先前的结果一致。2,3
摘要 — 本文在重离子辐照下测试了商用可编程片上系统(PSoC 5,来自赛普拉斯半导体公司),重点测试了系统的模数接口模块。为此,将数据采集系统 (DAS) 编程到被测设备中,并使用设计多样性冗余技术进行保护。该技术通过使用两种不同架构的转换器(一个转换器和两个逐次逼近寄存器 (SAR) 转换器)以不同的采样率运行,实现了不同级别的多样性(架构和时间)。实验在真空室中进行,使用能量为 36 MeV 且足以穿透硅的 16 O 离子束在活性区域产生 5.5 MeV/mg/cm 2 的有效线性能量传输 (LET)。平均通量约为 350 粒子/秒/cm 2,持续 246 分钟。评估了每个转换器对单粒子效应的个体敏感性,以及整个系统截面。结果表明,所提出的技术可有效缓解源自转换器的错误,因为使用分集冗余技术可纠正 100% 的此类错误。结果还表明,系统的处理单元容易挂起,可以使用看门狗技术来缓解。
I. 引言 工业界、研究机构和学术界使用专门的辐照设备对微电子元件进行辐照试验,以研究单粒子效应 (SEE)。具体来说,散裂设备试图重现感兴趣的辐射环境,获得超过数百 MeV 的能量范围。只有大型加速器才能达到如此高的能量,因此全球范围内的可用性有限。在欧洲,用于微电子测试的两种散裂设备是啁啾辐照 (ChipIr) 和欧洲核子研究中心高能加速器混合场 (CHARM)。ChipIr 是英国卢瑟福·阿普尔顿实验室的光束线,它利用 ISIS 加速器的 800 MeV 质子在钨靶上的散裂来产生类似大气的中子束 [1]。 CHARM 是位于瑞士 CERN 的设施,它使用 PS 加速器的 24 GeV 质子作用于铜靶,产生高能强子混合场,主要为中子,但也包括质子、介子和 K 介子 [2]。根据辐射场的性质,ChipIr 主要用于地面或飞行高度测试,而 CHARM 则专用于加速器或太空应用。两者需要进行详细交叉校准的原因
粒子宇宙学的巨大成功是与当前宇宙微波背景(CMB)温度t¼2的大爆炸宇宙学的一致性。7 k,测量值ωb,标准模型(SM)中三个光中微子的存在,以及测得的氦4(4 He)和氘(d)的原始量。这些元素的形成对物理敏感,温度范围为100 keV至〜10 meV,有时从几秒钟到宇宙寿命的几分钟。原始4和D的测量达到了精度百分比,因此我们能够询问有关该时代宇宙特性并获得定量答案的问题。这样一个问题涉及宇宙“黑暗辐射”的性质。现在是通过大爆炸核合成(BBN)和CMB建立的,即早期宇宙能量密度的相当一部分是黑暗辐射的形式。SM将这种辐射解释为SM中微子,它与光子浴中的热接触直至几MeV接近温度。有重要的理由来测试这种解释。例如,在早期与SM的热接触中的其他(近)无质量状态可能会增加此深色辐射。在Lambda冷暗物质中,BBN,CMB和BARYON声学振荡(BAO)的当前95%约束。4(BBN),△n eff≲0。33(CMBþBAO用于λCDMþNEFF),
加速器:•HVE 6 MV串联:加速大多数元素从H到Au(1μm点尺寸),非常适合模拟材料中的辐射损害•NEC 3 MV pelletron:加速大多数气体,大多数气体,(150 nm)(150 nm)Rutherford scallford scattersing and Not oferative specting and bebs specter•HVE植入率(350 kV),1个•1°MM,•1 mm,•1 mm,•1 mm,•1 mm,1°MM,•1 mm,1°M。可用的涂层,沉积技术