关键词代谢,知觉,分子机器,合成生物学,AI,功能主义摘要摘要有关感知生物学和进化条件的最近辩论引起了人们对细粒功能主义的重新兴趣。根据彼得·戈弗雷·史密斯(Peter Godfrey-Smith)提出的这样的说法,感知取决于生物体的精细活动特征。具体来说,这些细粒度活动的规模,上下文和随机性。这种观点的含义是当代人工智能(AI)是贫穷的候选人。在当前的AI缺乏从事此类生活活动的能力的情况下,无论其粗粒的功能如何,它都会缺乏知觉。在本文中,我们审查了细菌功能主义的案例,并表明有些当代机器满足了戈弗雷·史密斯(Godfrey-Smith)确定的精细功能标准,因此是候选人的候选人。分子机器(例如布朗计算机)在其规模,上下文和随机性中类似于代谢活性,并且可以作为AI的基础。分子计算是根据当代哲学叙述的知名度的有前途的人造知觉的候选人。1。介绍在向欧洲议会议员讲话中,哲学家托马斯·梅辛格(Thomas Metzinger)要求欧盟“禁止所有风险或直接旨在直接旨在创建合成现象学的研究”(Metzinger,2018,第2页)。Metzinger认为当前的人工智能(AI)缺乏政治和道德代表。因此,研究人员是创建一个能够具有主观经验(例如苦难)的人工系统,我们将缺乏减轻相关风险的工具。尽管Metzinger并不孤单,他对合成现象学的创建的关注,但其他人则认为人为的知觉超出了我们的技术能力(参见Dennett,1994年和Shanahan,2015年,有关讨论)。
我们还担心对教师的压力。他们的福祉对他们和我们的学生来说都是至关重要的。他们不再教“班级”:他们教25个人,所有人都有不同的需求,个人情况和反馈要求。今天的课程更加量身定制,多样性要多得多,计划得更好,并且总是更有趣。这对男孩来说很棒,但可以给敬业的老师带来成本,他们将永远为学生做更多的事情。新的工作环境也为运营和支持人员带来挑战。创新和不断变化的期望应意味着员工的工作方式不同,而不仅仅是更多。
摘要 - 本文调查了数学定律,电路和体系结构的发展,这些数学定律,电路和体系结构模拟了我们的大脑如何使我们的思想发展,并展示了这些贡献如何为开发通用自主的自适应算法和机器人提供工程和技术中智能应用的蓝图。短期记忆,中期记忆和长期记忆的数学定律为所有随后的生物神经网络模型提供了当代基础,随后始于1968年,随后稳定的模型发现和开发流到了当今。1983年在本期刊上发表的Cohen – Grossberg模型和定理是这一系列发展的一步。它证明了使用lyapunov函数作为一种工具的通用神经网络的全局限制定理。这些定理提供了一种保证,可以保证这些网络中的学习会产生稳定的记忆。本文调查了神经网络设计和应用的其他数学基础,并描述了具有越来越强大且一般功能功能的模型增量分离的建模方法。通过自适应共振理论或艺术来说明这种方法,这些结构解释了我们的大脑如何自主学习参加,识别和预测不断变化的世界中的对象和事件,并在途中解释了我们的大脑如何变得有意识,以及对学习强迫进化以发现有意识的心灵状态的计算约束。多种类型的共振支持各种有意识的意识,并可以对大型心理和神经生物学数据库的解释和预测有关受访,认知,情感和行动。由于艺术可以从不断变化的世界中的普遍误差纠正问题的思想实验中得出,因此其扩展的应用程序扩展到自主智能系统的开发应改变未来的技术。
出版人 Carly Rixham 编辑 Kat Friedrich,主编 Lucy Cooley,编辑 Margaret Tanner,编辑 设计 Sunshine Urbaniak,创意总监 撰稿人: Jill K. Cliburn、Cynthia Finley、Chris Gueymard、Roger Horowitz、Emmanuel Iddio、Paul Kando、Alicia Kelton、Katie Kienbaum、George Kuo、John A. “Skip” Laitner、Jennifer Macotto、Roma Maycock、Gilbert Michaud、Ella Nielsen、Patrice “Pete” Parsons、Dave Renné、Tom Stoffel、Rich Strömberg 部门撰稿人: Wyldon Fishman、Gilbert Michaud、Paulette Middleton、Emily Moog、Debra Rucker Coleman、Daniel Simon、Julian Wang 编辑委员会 Kat Friedrich,主席 Wyldon Fishman、David Ginley、Luther Krueger、Paulette Middleton、 Jane Pulaski、Carly Rixham、Karen Soares、Jay Warmke ASES 运营 Carly Rixham,执行董事 Ella Nielsen,项目总监 Sarah Townes,首席财务官 ASES 董事会 Benjamin Luce,主席 Karen Soares,副主席 Dara Bortman,秘书 Tom Thompson,财务主管 Mary Ellen Barker、Abraham Ellis、Robert Foster、David Ginley、Simeng (Sampson) Hao、Sydney Muñoz、Debra Rucker Coleman、Henry K. Vandermark
《思想交流:本科生研究期刊》是密歇根大学迪尔伯恩分校、密歇根大学弗林特分校和奥克兰大学的联合出版物。版权:这些页面中材料的版权归这些机构共同所有。有关版权的问题应咨询下面列出的编辑。版权所有 2003,密歇根大学董事会和奥克兰大学董事会。密歇根大学董事会 奥克兰大学董事会 Julie Donovan Darlow Henry Baskin Laurence B. Deitch Monica Emerson Denise Ilitch Richard Flynn Olivia P. Maynard Michael Kramer Andrea Fischer Newman Jacqueline Long Andrew C. Richner Ann V. Nicholson S. Martin Taylor Dennis K. Pawley Katherine E. White Ganesh Reddy Mary Sue Coleman(当然成员) Gary D. Russi(当然成员) 密歇根大学迪尔伯恩分校执行官 Daniel Little,校长 Donald Bord,代理教务长兼学术事务副校长 Robert Behrens,商务事务副校长 Stanley E. Henderson,招生管理和学生生活副校长 Edward Bagale,政府关系副校长 Thomas A. Baird,机构发展副校长 密歇根大学弗林特分校执行官 Ruth Person,校长 Jack Kay,教务长兼学术事务副校长 David Barthelmes,行政副校长 Mary Jo Sekelsky,学生服务和招生管理副校长 Jack Kay,机构发展代理副校长 奥克兰大学 执行官 Gary D. Russi,校长 Virinder K. Moudgil,学术事务高级副校长兼教务长 John W. Beaghan,财务和行政副校长兼董事会财务主管 Rochelle A. Black,政府关系副校长 Susan Davies Goepp,大学关系副校长 Mary L. Otto,外联副校长 Mary Beth Snyder,学生事务和招生管理副校长 Victor A. Zambardi,法律事务副校长兼总法律顾问兼董事会秘书 期刊编辑委员会 密歇根大学弗林特分校 密歇根大学迪尔伯恩分校 奥克兰大学 John Callewaert Jonathan Smith Kathleen Moore Andre Louis Susan Gedert Suzanne Spencer-Wood,编辑 (810) 762-3383 (313) 593-5490 (248) 370-2140 密歇根大学和奥克兰大学作为提供平等机会/平权行动的雇主,遵守有关不歧视和平权行动的适用联邦和州法律,包括 1972 年教育修正案第 IX 条和 1973 年康复法案第 504 节。大学致力于对所有人实行不歧视和平等机会的政策,不论其性别、肤色、宗教、信仰、国籍或血统、年龄、婚姻状况、性取向、残疾、越战老兵身份在就业、教育计划和活动以及招生方面的重要性。咨询或投诉可联系密歇根大学平权行动主任和 Title IX/第 504 条协调员,地址:4005 Wolverine Tower, Ann Arbor, Michigan 48109-1281,电话:(734)763-0235,TDD:(734) 647-1388,或联系奥克兰大学多元化与合规主任,地址:203 Wilson Hall, Oakland University, Rochester, Michigan 48309-4401,电话:(248) 370-3496。
在“大脑十年”期间,许多作者都试图提供帮助。心理学家伯纳德·巴尔斯 (Bernard Baars) 的《意识剧场》(1997),哲学家大卫·查尔默斯 (David Chalmers) 的《意识心灵》(1996),神经学家安东尼奥·达马西奥 (Antonio Damasio) 的《对所发生之事的感觉》(1999),生物人类学家特伦斯·迪肯 (Terrence Deacon) 的《象征物种》(1997),神经科学家杰拉尔德·埃德尔曼 (Gerald Edelman) 和朱利奥·托诺尼 (Giulio Tononi) 的《意识宇宙》(2000),进化论者尼古拉斯·汉弗莱斯 (Nicholas Humphreys) 的《如何解决身心问题》(2000),认知科学家史蒂芬·平克 (Steven Pinker) 的《心灵如何运作》(1997),计算神经科学家埃德蒙·罗尔斯 (Edmund Rolls) 的《大脑与情感》(1999)。所有这些作品或多或少都涉及大脑、心灵的运作以及两者之间的关系。尽管这些作者来自不同的学科,但或多或少都认同目前普遍持有的观点,可以粗略地表述为“心智就是大脑所做的事情”。
摘要:唐纳德·格里芬(Donald Griffin)共同发现了蝙蝠声纳,并建立了回声定位领域。他研究了鸟类的迁移并建立了认知伦理学,研究动物意识和心理经验。在所有这些努力中,他面临敌对的反对。传记(Ristau 2024)研究了格里芬的生活以及在这些领域的他和其他人的科学探索。这个Précis强调了他的论点,并支持动物意识以及后来的研究证据。Griffin考虑了科学家的抑制假设,包括笛卡尔观点,对先天行为的误解,对较低动物的偏见,对违反parsimony的关注以及对哲学家托马斯·纳格尔对“不可接受”科学的主张。格里芬提出了收集支持动物意识的证据的方法:(1)意识的神经相关性,(2)动物行为在满足新颖挑战和(3)动物交流中的多功能性,格里芬认为是动物思想上潜在的“窗口”。他思考动物心理经历的真正中立假设是什么?成为特定动物是什么感觉?以及我们如何收集证据回答这个问题?
Brain/MINDS 数据门户已经启动,用于共享 Brain/MINDS 项目中产生的数据和知识。该门户旨在为公众提供综合知识,并为开放研究和合作提供原始数据。
脑机接口 (BCI) 是神经病学和神经外科领域的一项重大技术进步,标志着自 1924 年脑电图问世以来的重大飞跃。这些接口有效地将中枢神经系统信号转换为外部设备的命令,为因中风、脊髓损伤和神经退行性疾病等多种神经系统疾病而导致严重沟通和运动障碍的患者带来革命性的好处。BCI 使这些人能够与周围环境进行交流和互动,利用他们的脑信号操作接口进行交流和环境控制。这项技术对于那些完全被困在里面的人来说尤其重要,在其他方法无法满足需求的情况下,它提供了一条沟通生命线。BCI 的优势是显而易见的,它为严重残疾患者提供了自主权并提高了生活质量。它们允许与各种设备和假肢直接互动,绕过受损或无功能的神经通路。然而,挑战依然存在,包括准确解读脑信号的复杂性、需要单独校准以及确保可靠的长期使用。此外,还需要考虑自主权、同意权以及对技术的依赖性等伦理问题。尽管存在这些挑战,BCI 仍代表着神经技术的革命性发展,有望改善患者的治疗效果并加深对脑机接口的理解。
上下文。Atacama大毫米/亚毫米阵列(ALMA)透露,原始盘的毫米灰尘结构极为多样,从小而紧凑的灰尘盘到具有多个环和间隙的大型灰尘盘。已经提出,内部圆盘中H 2 O发射的强度特别取决于外盘中的冰卵石的涌入,这一过程将与外尘盘半径相关,并且可以通过压力凸起来预防。此外,灰尘结构还应影响内盘中其他气体物种的发射。由于陆地行星可能在内部圆盘区域形成,因此了解其组成是感兴趣的。目标。这项工作旨在评估压降对内盘分子储层的影响。存在尘埃间隙,并可能在圆盘上较远的巨型行星形成,可能会影响内盘的组成,从而影响陆地行星的构建块。方法。使用詹姆斯·韦伯(James Webb)空间望远镜(JWST)上中红外仪器(MIRI)中型仪器(MIRI)中型培养物(MRI)的敏感性和光谱分辨率与Spitzer相比,我们比较了H2 O,H2 O,HCN,C 2 H 2的观察性发射特性,并与Alma观察的二张外粉丝观察,并确认二张外的盘中,并在ALMA观察中进行杂物,并在ALMA观察中涂鸦,并在Alma观察中涂鸦,并在Alma观察中,在Alma观察中,中间涂抹量宽度有数十个天文单位的椎间盘,周围有m⋆≥0的恒星。45m⊙。 结果。 我们发现,尘埃间隙的存在并不一定会导致H 2 O发射弱。45m⊙。结果。我们发现,尘埃间隙的存在并不一定会导致H 2 O发射弱。我们使用了新的可见性平面拟合ALMA数据来确定外尘盘半径并识别盘中的子结构。此外,相对缺乏较冷的H 2 O-发射似乎与含碳物种的发射升高有关。,大多数显示碳种类可检测到的发射。盘子和极宽的圆盘似乎作为一个有点独立的群体,具有更强的冷H 2 O发射和弱温暖的H 2 O发射。结论。我们得出的结论是,即使对于具有非常宽的间隙或空腔的盘子,完全阻塞径向尘埃似乎很难实现,这仍然可以显示出明显的冷H 2 O发射。但是,椎间盘之间似乎确实存在二分法,这些椎间盘表现出强烈的冷H 2 O和显示出HCN和C 2 H 2的强烈发射的二分法。对外灰尘盘结构和内盘组成的影响的更好限制需要有关子结构形成时间尺度和圆盘年龄的更多信息,以及将(CO和CO 2)等(Hyper)挥发物(如CO和CO 2)捕获的重要性,例如H 2 O(例如H 2 O),以及CO的化学转化,将CO转化为挥发性较小的物种。