BSW BNSSG Devon Dorset Glos Kernow Somerset SW England BNSSG C. diff 29.88 29.12 32.04 33.69 31.62 42.04 31.00 32.25 27.43 1 E. coli 58.44 54.83 84.50 87.16 37.08 79.93 83.61 69.49 68.66 2 MRSA 1.73 3.21 1.26 1.95 0.44 1.16 1.17 1.66 1.48 7 MSSA 20.60 20.42 29.68 26.68 26.73 14.04 29.25 29.25 29.32 29.32 24.32 24.32 21.91 2 PSEUD A 7.95 5.58 5.58 5.58 5.50 5.50 5.91 3.69 5.91 3.69 5.82 7.04 6.36 6.36 7.26 7.26 7.26 7.26 7.26 7.26 7.26 7.26 7.26 7.26 7.26 7.26 7.26 7.26 7.26 7.26 7.26 7.26 7.26 7.26 7.26 7.26 3.26 7.26 3 k le 25.88 16.55 23.76 25.13 20.46 21.27 2
警报 抗菌药物管理小组建议将此药物列入以下类别:限制。 卡巴培南类药物的广泛使用与耐甲氧西林金黄色葡萄球菌 (MRSA)、耐万古霉素肠球菌 (VRE)、多重耐药革兰氏阴性菌和艰难梭菌引起的感染患病率增加有关。适应症 由多重耐药革兰氏阴性菌引起的严重感染,例如由产超广谱β-内酰胺酶 (ESBL) 菌或耐卡巴培南肠杆菌 (CRE) 引起的败血症、腹腔内感染或脑膜炎。注意:1. 美罗培南对许多耐药革兰氏阳性菌无效,如 MRSA 和大多数表皮葡萄球菌。万古霉素是这些菌的一线治疗药物。美罗培南对青霉素敏感的革兰氏阳性菌和大多数厌氧菌有活性。 2. 在治疗 ESBL 或 CRE 时,应咨询传染病专家和微生物学家。 作用 美罗培南属于β-内酰胺类抗生素的卡巴培南亚类。 它抑制细胞壁合成。 (1) 美罗培南是一种时间依赖性抗生素,这意味着其杀菌效果取决于药物浓度保持高于引起感染的细菌的最低抑菌浓度 (MIC) 的时间 (T) ( T>MIC )。 (1) 对于中枢神经系统感染,美罗培南是比亚胺培南更好的选择。 美罗培南在脑脊液中的浓度更高,尤其是在脑膜发炎的情况下,并且与亚胺培南相比,其癫痫发作的发生率较低。药物类型 卡巴培南类抗生素 商品名 有多个品牌可供选择 剂型 500 mg 小瓶 1000 mg 小瓶 剂量 40 mg/kg/剂量 每 8 小时 剂量调整 治疗性低温:无信息。 ECMO:无信息。 肾功能不全 (2) :
1 沙特阿拉伯 Shaqra 大学应用医学科学学院临床实验室科学系。通讯作者:Babu Joseph bjoseph@su.edu.sa 引用方式:AL-GHANAYEM, AA 等人。山奈酚通过抗菌和抗氧化作用促进糖尿病大鼠的伤口愈合,而没有增殖作用。生物科学杂志。2024, 40, e40015。https://doi.org/10.14393/BJ-v40n0a2024-68974 摘要 研究新型植物化学物质用于预防和治疗多重耐药病原体引起的感染正受到关注。本研究评估了山奈酚对耐甲氧西林金黄色葡萄球菌 (MRSA) 和铜绿假单胞菌的体外抗菌活性。使用烟酰胺-链脲佐菌素诱发的糖尿病大鼠的切除伤口模型确定了其在体内抑制这些病原体的效果。山奈酚在体内和体外均表现出对测试细菌的抑制作用。1% (w/w) 浓度下它也能愈合切除伤口。在山奈酚治疗后观察到伤口组织中抗氧化酶的增加。与感染对照组相比,伤口组织中 MRSA 和铜绿假单胞菌数量减少,上皮化期缩短。苏木精和伊红染色检测到上皮变厚、毛细血管新生,炎症细胞减少。此外,Masson 三色染色观察到胶原纤维及其沉积增加。 40 µM 浓度的山奈酚对在高葡萄糖培养基中生长的人类角质形成细胞没有任何毒性,也不会影响促愈合细胞因子基因血管内皮生长因子 (VEGF) 和转化生长因子- -1 (TGFβ1) 的表达。山奈酚具有抗菌和抗氧化作用,但不会增加增殖基因的表达。关键词:上皮化。切除伤口。TGF- 1. VEGF。1. 简介
这种由纳米胶囊制成的绷带也可能被军方用于战斗和其他伤口等溃疡。存在引起疾病的致病细菌时,医学敷料将从纳米胶囊中释放抗生素,旨在在感染恶化之前治疗感染。释放抗生素时,先进的伤口敷料也会改变颜色,使医疗专业人员有感染的存在。只有能够引起疾病的细菌会导致这种绷带激活。由于毒素,敷料将变色,它会释放出含有抗生素的胶囊的破裂。以这种方式,抗生素耐药细菌(如MRSA)(耐甲氧西林抗甲氧西葡萄球菌金黄色葡萄球菌)出现的风险降低了,因为仅在必要时释放抗生素。
全球范围内耐多药(MDR)细菌感染的增加迅速引起全球关注。本研究旨在探讨 25 株土壤放线菌菌株对 MDR 菌株包括大肠杆菌菌株 M4、铜绿假单胞菌菌株 M19、肺炎克雷伯菌菌株 M19、枯草芽孢杆菌菌株 M18 和耐甲氧西林金黄色葡萄球菌 (MRSA) 的抗菌和抗生物膜潜力。在本研究中,编码 APM-7、APM-11 和 APM-21 的三种放线菌分离株表现出强大而广泛的抗菌谱。从这些分离株中获得的提取物的最低抑菌浓度 (MIC) 范围为 78 μg/ml 至 10,000 μg/ml。此外,提取物还显示出显著的生物膜抑制值,范围从 6.06% 到 72.4%。结果显示,APM-21 提取物具有最佳的抗菌和抗生物膜活性,对 MRSA 的作用最强。根据 16S rRNA 基因的核苷酸测序,APM-7、APM-11 和 APM-21 菌株分别与蓝紫色链霉菌、蓝色链霉菌和帕纳氏链霉菌具有相似的特性。基于液相色谱串联质谱 (LC-MS/MS) 分析,在这三种提取物中均检测到两种抗菌化合物,即兰西曼霉素 III 和肠霉素。有趣的是,APM-21 提取物还含有两种突出的抗菌物质,包括对磁醌 C 和青霉素 I,表明它们对最潜在的活性做出了贡献。此外,这为用于控制 MDR 细菌菌株感染的活性化合物对抗策略的有希望的候选药物提供了新的见解。
金黄色葡萄球菌是世界上最致命的病原体之一,这种生物体的抗性菌株的升高导致许多威胁生命的医疗状况。这种革兰氏阴性菌可能会引起一系列疾病,从轻微的皮肤感染到严重感染,例如毒性休克综合征或心内膜炎,并且在美国导致的死亡人数比任何其他耐药性病原体都要多。每年由于虫球菌感染而在美国每年在美国发生1,2个门诊和急诊室就诊和464 000次住院。3随着抗生素的使用正在上升,医院中多药的抗菌菌株正在出现,最值得注意的是耐甲氧西林的金黄色葡萄球菌(MRSA),事实证明,传统抗生素的感染是徒劳的。
近年来,出现了新的含卤素药物。 2021 年,FDA 批准了 14 种新化学实体(表 S1)用于临床 [ 1 ]。 前一年,同样数量的卤代分子进入市场 [ 2 ]。 这些数据突出了两个方面:一方面,尽管 COVID-19 大流行,但仍在努力寻找新疗法;另一方面,卤素的使用在药物化学中变得越来越常见。 不仅合成化合物而且卤代天然产物也值得一提,因为它们表现出广泛的生物活性(例如抗菌、抗真菌和抗癌)[ 3 ]。 例如,万古霉素(图 1 )是一种从东方链霉菌中提取的临床含氯抗生素,主要用于治疗耐甲氧西林金黄色葡萄球菌 (MRSA) 感染 [ 4 ]。
1960 年代,耐甲氧西林金黄色葡萄球菌(MRSA)开始出现,并有报道呈波浪式出现(Strausbaugh et al ., 1996)。国家医院感染监测系统的数据报告,重症监护病房中耐甲氧西林金黄色葡萄球菌菌株数量急剧增加,达到 59.5%-64.4%(Klevens et al., 2006)。目前已知的葡萄球菌的药物靶点包括肽聚糖生物合成途径的青霉素结合蛋白。以前,β-内酰胺类抗生素对葡萄球菌非常有效。此外,由于改良型青霉素结合蛋白的生物合成和β-内酰胺酶的生物合成,这些药物现在不再有效 (Kong et al .,2010)。全世界都在关注研究一种以前未曾研究过的抗生素的可能性。
摘要。乳酸菌 (LAB) 是重要的细菌群之一,被认为是益生菌的发展方向。LAB 大多从牡蛎等生物的胃肠道 (GIT) 中分离出来。牡蛎属于生活在河口地区的双壳纲。研究的目的是分离和筛选针对选定病原体的抗菌活性。采用倾注平板法分离 LAB,使用 MRSA(De Man、Rogosa、Sharpe 琼脂)作为 LAB 的选择培养基。然后,通过琼脂扩散试验筛选 LAB 的抗菌活性。结果表明,四种分离物(TR-01;TR-02;TR-03 和 TR-04)对大肠杆菌、肠道沙门氏菌、金黄色葡萄球菌、蜡状芽孢杆菌等病原体具有抑制活性。因此,需要进一步测定以选出 4 种分离物作为潜在的益生菌。